Behavioral

observations of number of items bought in chain stores by consumers
ac...

ASSIGN BUSTER

Students: Egor Karpunin, 5006119 Dominika Majcher, 5028142 Behavioral observations of Number of items bought in chain stores by consumers according to their sex Assignment for the course " Consumer Behaviour" Introduction The general purpose of our study was to define, which part of the observed buyers (male or female) tends to buy more than 1 item. According to our assumptions, women buy more items than men. This could be a result of the women's shopping nature.

Usually women going to some shopping mall to buy, for example, the presents for Christmas (or even just doing shopping for themselves) for their relatives do not set a specific goal before actually go shopping. They just find some time and then decide to visit some shop. Then being already in the shop they choose to buy anything that seems attractive or could be somehow useful for those whom they buy the present. So this so-called "shopping strategy" means that at the same time they can like a lot of things and buy not only one (for their husband or sun) but also for their friends, colleagues etc.

They can also like some additional things like jewellery for the dress that they have just decided to buy. We can't say the same about men's shopping. Everybody tend to think that men do not like shopping. But actually when there are some who likes it or they just have to do it to make their couple (or kid, grandmother, colleague) fell " real" Christmas (etc.) they go to the shop with an already defined objective. As a rule it means that they had already thought through the present itself in advance and now they just want to go to specific shop and buy one. But they also can buy several items in one shop.

All in all we are going to confirm or reject our assumption. | Male Customers| Female Customers| | 1 Item| 24| 10| 34| 2 or more Items| 12| 34| 46| |36| 44| 80| Procedure Our observation was made on Friday, December 7th, 2012, between 3 o'clock and 6 o'clock in the afternoon. We chose the time of Christmas shopping when everybody finished their work and a lot of people went to stores located in the city center. We went to the chain stores H; M, Zara, New Yorker and Peek; Cloppenburg located at Zeil street in Frankfurt am Main offering their products to both male and female customers.

We observed the main check out in every of these stores (both groups of customers buy there) - stores like these are very popular among both groups of customers. We chose the ' Zeil' street in Frankfurt because of wide variety of customers shopping there and their random preferences. In every store we observed first 20 customers who paid for their shopping at the main check out. Every time we stayed near the check out place and noted the sex of every client as well as number of items they bought. Results We observed 80 customers (one by one, without breaks) in described chain stores.

We got 80 observations, 44 of them were women and 36 men. In 46 cases the customers bought more than 1 item and in 34 just one product (so 57, 5% customers bought at least 2 or more items). Distribution of these purchases has been shown on the graph below: The graph follows that women buy more often at least 2 or more items (vs. 1 item) in chain stores than men. To check this conclusion we computed the Chi-Square-test (the analyses have been included as an appendix at the end of the paper). We got the Actual Chi-Square value on the level 15. 4. The Critical Chi-Square value with 1 degree of freedom and p-value 0.05 is 3.84 . We compared

Actual 2 with the Critical 2 and made sure that the given Actual Chi-Square value is bigger than the Critical one (15. $64 ; 3.84$). This means that women buy more often at least 2 or more items (vs. 1 item) in chain stores than men. Conclusions (Egor) According to the results of the observation our initial assumption that women tend to buy 2 or more items in the stores while shopping, whether men tend more often to by only 1 item, is right.

As the observation took part on Friday (end of the working week actually) from our point of view the results could differ the other day from that we have now, but the difference would not be so significant that could refuse our initial hypothesis. The location (the place where we made the observation) change also would not change the results. The prerequisite of our observation is to look at behavior of people in chain stores, so it does not really matter for the final result whether to collect out observations in the shops at Zeil Street or in Nordwestzentrum shopping mall.

Our survey could also be useful for marketers of the shops where the observation took place. For instance, if women tend to buy more than 1 item in a shop like $H ; M$, Zara etc. , then chain stores should make some combinations of matching product, offer some additional accessories or just a pack of few clothes for a bit lower price(for example, skirt + blouse). So when women can get this ability to buy something more than just 1 thing that they chose, this ability can be used and they would make their choice into buying additional jewellery for their new dress or buying skirt+blouse together than buying only one item of clothes.

Appendix 1. Collected data | Male| Female| Row| 1 item| 24| 10| 34| 2 or more items| 12| $34|46|$ Column| 36| $44|80|$ Hypothesis 0: Men buy more https://assignbuster.com/behavioral-observations-of-number-of-items-bought-in-chain-stores-by-consumers-according-to-their-sex/
often 2 or more items (vs. 1 item) in chain stores than women. Hypothesis 1: Women buy more often 2 or more items (vs. 1 item) in chain stores than men. 2. Actual $22=$?? (Observed Cell Frequency - Expected Cell Frequency)2/Expected Cell Frequency\} Expected Cell Frequency|||||Row 1| $(24+10) / 80|0.425| \mid$ Column $1|(24+12) / 80| 0.45 \mid$ Row $2|(12+34) / 80|$ 0. 575|| Column 2| $(10+34) / 80|0.55|$ Row 1 Prob \times Column 1 Prob $=|0.91|$ Row 1 Prob x Column 2 Prob $=|0.234|$ Row 2 Prob x Column 1 Prob $=\mid 0$. 259| Row 2 Prob x Column 2 Prob $=|0.316| 0.191 * 80=|0.234 * 80=| 0$. $259 * 80=|0.316 * 80=|15.3| 18.7| 20.7|25.3|$ Actual $2=(24-15$. $3)^{\wedge} 2 / 15.3+(10-18.7)^{\wedge} 2 / 18.7+(12-20.7)^{\wedge} 2 / 20.7+(34-25.3)^{\wedge} 2 / 25.33$. Actual 2 vs. Critical 2 Actual $2=15.64$ Critical $2=3.84$ ($1 \mathrm{~d} . \mathrm{f}$., p-value 0 . 05) 3. 84 ; $15.64=$; Critical 2 ; Actual 2 Conclusion: The hypothesis 1 is true. Women buy more often 2 or more items (vs. 1 item) in chain stores than men.

