# An overview of the ozone layer



#### INTRODUCTION

# " THE OZONE LAYER"

The ozone layer is

a portion of earth

atmosphere that

contains high

levels of ozone.

The atmosphere is

divided into five

layers: the

troposphere, the

stratosphere, the

mesosphere, the

thermosphere, and

the exosphere. The

troposphere is the

layer closest to

earth and is where

all weather

happenings occur.

The stratosphere is

located directly

above the

troposphere, about

10-50 kilometers

above the planet,

and houses the

ozone layer at an

altitude of 20-30

kilometers. The

mesosphere is

located

approximately 50-

80 kilometers

above the earth,

while the

thermosphere

rests at an altitude

of approximately

100-200

kilometers above

the earth surface.

Finally, the

boundary of the

outermost layer,

the exosphere,

extends roughly to

960-1000

kilometers above

the earth.

The ozone found in

our atmosphere is

formed by an

interaction

between oxygen

molecules

(composed of two

oxygen atoms) and

ultraviolet light.

When ultraviolet

light hits these

oxygen molecules,

the reaction

causes the

molecules to break

apart into single

atoms of oxygen

(UV light + O2 ->

O + O). These

single atoms of

oxygen are very

reactive, and a

single atom

combines with a

molecule of

oxygen to form

ozone (O3), which

is composed of

three atoms of

oxygen (20 + 202)

-> 203).

### Need for OZONE LAYER

The ozone layer is

essential for

human life. It is

able to absorb

much harmful

ultraviolet

radiation,

preventing

penetration to the

earth surface.

Ultraviolet

radiation (UV) is

defined as

radiation with

wavelengths

between 290-320

nanometers, which

are harmful to life

because this

radiation can enter

cells and destroy

the

deoxyribonucleic

acid (DNA) of

many life forms on

planet earth. In a

sense, the ozone

layer can be

thought of as a UV

filter or our planets

built in sunscreen.

Without the ozone

layer, UV radiation

would not be

filtered as it

reached the

surface of the

earth. If this

happened, cancer

would break out

and all of the living

civilizations, and

all species on earth

would be in

jeopardy. Thus, the

ozone layer

essentially allows

life, as we know it,

to exist.

A Dobson Unit is a

measurement of

how thick a

specific portion of

the ozone layer

would be if it were

compressed into a

single layer at zero

degrees Celsius

with one unit of

atmospheric

pressure acting on

it (standard

temperature and

pressure - STP).

Thus, one Dobson

Unit (DU) is

defined as . 01 mm

thickness at

standard

temperature and

pressure. Since the

ozone layer over

this area would

form a 3 mm thick

slab, the

measurement of

the ozone over

Labrador is 300

DU.

# Ozone depletion: Who is responsible?

It is important to

recognize the

sources of ozone

depletion before

one can fully

understand the

problem. There are

three main

contributors to the

ozone problem:

human activity,

natural sources,

and volcanic

eruptions. Human

activity is by far

the most prevalent

and destructive

source of ozone

depletion, while

threatening

volcanic eruptions

are less common.

Human activity,

such as the release

of various

compounds

containing chlorine

or bromine,

accounts for

approximately 75

to 85 percent of

ozone damage.

Perhaps the most

evident and

destructive

molecule of this

description is

chloroflourocarbon

(CFC). CFCs were

first used to clean

electronic circuit

boards, and as

time progressed,

were used in

aerosols and

coolants, such as

refrigerators and

air conditioners.

When CFCs from

these products are

released into the

atmosphere, the

destruction begins.

As CFCs are

emitted, the

molecules float

toward the ozone

rich stratosphere.

Then, when UV

radiation contacts

the CFC molecule,

this causes one

chlorine atom to

liberate. This free

chlorine then

reacts with an

ozone (O3)

molecule to form

chlorine monoxide

(CIO) and a single

oxygen molecule

(O2). This reaction

can be illustrated

by the following

chemical equation:

CI + O3 -> O2 +

ClO. Then, a single

oxygen atom

reacts with a

chlorine monoxide

molecule, causing

the formation of an

oxygen molecule

(O2) and a single

chlorine atom (O +

CIO -> CI + O2).

This threatening

chlorine atom then

continues the cycle

and results in

further destruction

of the ozone layer .

Measures have

been taken to

reduce the amount

of CFC emission,

but since CFCs

have a life span of

20-100 years,

previously emitted

CFCs will do

damage for years

to come.

Natural sources

also contribute to

the depletion of

the ozone layer,

but not nearly as

much as human

activity. Natural

sources can be

blamed for

approximately 15

to 20 percent of

ozone damage. A

common natural

source of ozone

damage is

naturally occurring

chlorine. Naturally

occurring chlorine,

like the chlorine

released from the

reaction between a

CFC molecule and

UV radiation, also

has detrimental

effects and poses

danger to the

earth.

Finally, volcanic

eruptions are a

small contributor

to ozone damage,

accounting for one

to five percent.

During large

volcanic eruptions,

chlorine, as a

component of

hydrochloric acid

(HCI), is released

directly into the

stratosphere,

along with sulfur

dioxide. In this

case, sulfur dioxide

is more harmful

than chlorine

because it is

converted into

sulfuric acid

aerosols. These

aerosols accelerate

damaging

chemical reactions,

which cause

chlorine to destroy

ozone.

Rocket Launches May Need Regulation to Prevent Ozone Depletion

As the rocket

launch market

grows, so will

ozone-destroying

rocket emissions, if

left unregulated,

rocket launches by

the year 2050

could result in

more ozone

destruction than

was ever realized

by CFCs.

Since some

proposed space

efforts would

require frequent

launches of large

rockets over

extended periods.

In the policy world

uncertainty often

leads to

unnecessary

regulation, this

could be avoided

with a more robust

understanding of

how rockets affect

the ozone layer.

Current global

rocket launches

deplete the ozone

layer by no more

than a few

hundredths of 1

percent annually.

But as the space

industry grows and

other ozone-

depleting

chemicals decline

in the Earth's

stratosphere, the

issue of ozone

depletion from

rocket launches is

expected to move

to the forefront.

Today, just a

handful of NASA

space shuttle

launches release

more ozone-

depleting

substances in the

stratosphere than

the entire annual

use of CFC-based

medical inhalers

used to treat

asthma and other

diseases in the

United States and

which are now

banned.

Highly reactive

trace-gas

molecules known

as radicals

dominate

stratospheric

ozone destruction,

and a single

radical in the

stratosphere can

destroy up to 10,

000 ozone

molecules before

being deactivated

and removed from

the stratosphere.

Microscopic

particles, including

soot and aluminum

oxide particles

emitted by rocket

engines, provide

chemically active

surface areas that

increase the rate

such radicals "

leak" from their

reservoirs and

contribute to

ozone destruction.

Every type of

rocket engine

causes some

ozone loss, and

rocket combustion

products are the

only human

sources of ozone-

destroying

compounds

injected directly

into the middle

and upper

stratosphere

where the ozone

layer resides.

Although U. S.

science agencies

spent millions of

dollars to assess

the ozone loss

potential from a

hypothetical fleet

of 500 supersonic

aircraft — a fleet

that never

materialized —

much less research

has been done to

understand the

potential range of

effects the existing

global fleet of

rockets might have

on the ozone layer.

Since 1987 CFCs

have been banned

from use in aerosol

cans, freezer

refrigerants and air

conditioners. Many

scientists expect

the stratospheric

ozone layer —

which absorbs

more than 90

percent of harmful

ultraviolet

radiation that can

harm humans and

ecosystems — to

return to levels

that existed prior

to the use of

ozone-depleting

chemicals by the

year 2040.

Rockets around

the world use a

variety of

propellants,

including solids,

liquids and

hybrids. Ross said

while little is

currently known

about how they

compare to each

other with respect

to the ozone loss

they cause, new

studies are needed

to provide the

parameters

required to guide

possible regulation

of both commercial

and government

rocket launches in

the future.

To reduce the risk

that unpredictable

and more strict

ozone regulations

would be a

hindrance to space

access by

measuring and

modeling exactly

how different

rocket types affect

the ozone layer.

Volcanic Aerosol Clouds and Gases Lead To Ozone Destruction

The volcanic gases

released during

eruptions

accelerate

reactions that lead

to ozone

destruction. The

researchers found

that even

relatively small

volcanic eruptions

can destroy ozone

and create

localised 'holes' in

the stratosphere.

Previously,

scientists had

concentrated on

the climatic effects

of the tiny particles

of volcanic

sulphate created

from the sulphur

dioxide gas

emitted during an

eruption. For the

first time,

analysing data

from a 2000

eruption of the

Hekla volcano,

Iceland, the

researchers

discovered that

volcanic gases

may also lead to

the formation of

ice and nitric acid

particles. This is a

critical finding as

these particles '

switch on' volcanic

chorine gases,

accelerating

reactions that lead

to ozone

destruction.

Volcanic eruptions

which penetrate

the stratosphere

can lead to the

formation of the

type of clouds that

promote reactions

with volcanic

chlorine gases -

gases that destroy

stratospheric

ozone and lead to

the formation of '

mini-ozone holes.

The ozone hole:

Why over

Antarctica?

When the topic of

the ozone layer

arises, many

people

immediately think

of the hole over

Antarctica, but few

know why the hole

is actually there. In

1985, British

scientists

discovered this

hole. A special

condition exists in

Antarctica that

accelerates the

depletion of the

ozone layer. Every

Arctic winter, a

polar vortex forms

over Antarctica. A

polar vortex is a

swirling mass of

very cold, stagnant

air surrounded by

strong westerly

wind. Since there

is an absence of

sun during Arctic

winters, the air

becomes incredibly

cold and the

formation of ice

clouds occurs.

When the sun

returns in the

spring, the light

shining on the

nitrogen oxide

filled ice particles

activates the

formation of

chlorine. This

excess of ozone

destroying chlorine

rapidly accelerates

the depletion of

the ozone layer.

Finally, when the

polar vortex

breaks up, the

rapid dissolution

decreases. It is

evident that the

effects of the polar

vortex are

dramatic. For

about two month

every southern

spring, the total

ozone declines by

about 60% over

most of Antarctica.

In the core of the

ozone hole, more

than 75% of the

ozone is lost and at

some altitudes, the

ozone virtually

disappeared in

October, 1999. The

average size of the

ozone hole is

larger than most

continents,

including South

America, Europe,

Australia, and

Antarctica, and the

maximum size of

the ozone hole in

1996 was larger

than North

America. Finally,

one must note that

the hole over

Antarctica is truly

a hole only in the

Antarctic spring,

when the depletion

is extremely

severe due to the

vortex.

The hole above

Antarctica has

clearly proven to

be detrimental.

Plankton,

organisms that live

on carbon, light,

and nutrients such

as nitrogen, are

near the bottom of

the food chain, and

are accustomed to

low levels of UV. In

December of 1994,

on the island of

Bacharcaise off

Antarctica,

increased levels of

**UV** radiation

decreased the

number of

photoplankton

dramatically.

Photoplankton are

the main source of

food for krill, which

in turn are the

main source of

food for various

birds and whales in

the Antarctic

region.

At this time, due to

the decreased

number of

photoplankton, the

krill level was so

low that it could

not support the

penguin

population. Thus,

some penguins

were forced to

travel up to two

hundred miles in

search of food, but

most returned with

none. Furthermore,

when summer

came, only

approximately ten

of the 1800

hatched penguin

chicks survived.

This tragedy

illustrates the fact

that even

underwater

creatures are not

protected from

harmful UV rays,

and is a perfect

example of the

entire food chain

being affected due

to an increase in

the UV radiation as

a result of the

thinning ozone

layer.

## EFFORTS TO REDUCE OZONE DEPLETION

Internationalefforts to attempt to limit the production and release of CFCs began once the role of CFCs in ozone destruction was established. In 1987 the United Nations Montreal Protocol was agreed and came into effect in January 1989. The countries that signed up to the protocol aim to phase out the use of CFCs globally. The main CFCs ceased to be produced by the signatories in 1995, and the European Union ceased using them in 1998, except for a very small amount in limited and essential uses such as medical sprays. Although the Montreal Protocol has been successful, it should be noted that without the subsequent amendments, recovery of the ozone hole would have been impossible.

Thehydro-chlorofluorocarbons (HCFCs) were developed to replace CFCs.

These gases can still damage ozone if they reach the stratosphere, but they are less likely to since their extra hydrogen atom allows them to be destroyed in the lower layers of the atmosphere. These gases are also controlled under the Montreal Protocol and were phased out after 2004. The

gases that replaced both the CFCs and HCFCs are hydro-fluorocarbons (HFCs), which do not contain any chlorine atoms and so have no ozone depleting effect. Unfortunately, many of them are powerful greenhouse gases and could contribute to global warming if emitted in large quantities.

SincetheCFCshaveatmospheric lifetimes of about 50 to 100 years, and take 5 to 10 years to reach the upper atmosphere where they are broken down, the atmosphere reacts slowly to the cuts made in emissions of these gases. Stratospheric ozone should begin to increase as the amount of chlorine and bromine decreases. However, ozone is affected by changes in other gases, such as methane, temperature changes due to climate change, and also indirectly by particles from volcanic eruptions.

Compoundscontainingbromine, such as methyl bromide (mainly of natural origin) and the brominated CFCs (halons: used mainly as fire retardants), are also ozone-depleting chemicals. While the total amount of chlorine in the lower atmosphere peaked in 1994, and is now slowly declining, the total amount of bromine is still increasing. An assessment by the World Meteorological Organization in 1998 estimated that global and Antarctic ozone levels would return to pre-1980 levels by 2050, and in 2003 evidence suggested that the rate at which ozone is disappearing had indeed slowed down markedly, although estimates as to when ozone can return to a proper balance have now been revised to the latter half of the 21st century. However, many factors influence ozone, and future levels are not completely predictable.

#### **SOCIAL ASPECTS**

The most obvious, and perhaps most important connection between society and the ozone layer is the fact that scientific research suggests depletion of the ozone layer directly and indirectly endangers the health of the population. Research has focused on connections between the depleting ozone layer and skin cancer, immuno-suppression, cataracts, and snowblindness.

#### Ozone depletion and skin cancer: What is the connection?

Exposure to UV radiation increases the risk of skin cancer and causes damage to the DNA in the skin cells. DNA is extremely sensitive to UV radiation, especially UV-B radiation. UV radiation is located in the optical radiation portion of the electromagnetic spectrum, while UV-B radiation is a subdivision of the ultraviolet spectrum and consists of a wavelength of 280 to 315 nanometers. Thus, DNA is especially sensitive to radiation with a wavelength between 280 and 315 nanometers.

When UV radiation hits the skin, it can cause the cell to lock up and scramble or delete DNA information. This action causes confusion in the DNA, and the body loses control of the growth and division of the cell. If the conditions are right, the cell may become cancerous. It is important to note that not all affected cells turn into skin cancer, for many can repair themselves. However, continual exposure to UV radiation increases the risk of skin cancer due to cumulative damage of the DNA.

Skin cancer can be divided into two categories: melanoma and non-melanoma. The melanoma form of skin cancer is the more dangerous of the two. This type of cancer has the ability to spread quickly throughout the https://assignbuster.com/an-overview-of-the-ozone-layer/

body and invade other cells. On the other hand, non-melanoma skin cancer is not to be taken lightly either, but is a less serious form of the disease. Non-melanoma skin cancers are not usually life threatening, and removal is relatively routine. However, treatment does include radiation therapy or surgery. The concern of many is that sunburn may lead to increased risk of acquiring skin cancer. Some forms of cancer are associated with sunburn, while other forms are not. Melanoma skin cancer is a form that sunburns may play a leading role in. Jan van der Leun, a Dutch scientist, explains that, light hitting the outer layer of the skin, the epidermis, triggers the production of some substances which diffuse into the dermis below. The dermis is filled with blood vessels, and the chemical substances cause them to dilate, making the skin red and warm to the touch.

The bottom line is that UV ray exposure increases the risk of skin cancer. However, controversy lies around the question of whether or not the depletion of the ozone layer will lead to more sunburns, and in turn, more skin cancer. Some scientists suggest that the skin will gradually adapt to higher UV-B levels as the ozone gradually depletes. The opponent to this theory would state that the thinning of the ozone layer would lead to more human UV-B exposure. This increased UV-B exposure would, in turn, increase the damage to the DNA making it difficult for the cell to correct the damage before it divides. This damage accumulates over time and increases the chances that a cell will turn cancerous. In addition, since UV-B radiation damages the immune system, it is much more likely that a cell will turn cancerous. In animal studies, immunosuppressive effects caused by UV-B have indeed been shown to play an important role in the outcome of both

melanoma and non-melanoma skin cancers. Furthermore, states that for the non-melanoma skin cancers, the evidence is compelling and there are estimates that each percentage decrease in the stratospheric ozone will lead to a two percent increase in the incidence of these cancers. Thus, if the ozone depletes by ten percent over a certain time period, 250, 000 more people would be affected by these cancers each year.

Due to controversy in the scientific community, it is difficult to clearly state whether or not ozone depletion will lead to an increased risk of skin cancers, but scientists agree on the fact that UV-B radiation plays a large role in the formation of cancer. Thus, it may very well be that as the UV filter we call the ozone layer thins, the increased amount of UV-B radiation posed on human skin may contribute to an increased amount of skin cancer. Yet, one can only weigh all the evidence and speculate, for science has yet to provide a cut and dry answer for society to base its judgments on.

#### **DISCUSSION**

Regardless of the details of the arguments, it is obvious that the depletion of the ozone layer is a serious problem that poses many consequences to society. Although scientific controversy exists, the possibility seems high that the depletion of the ozone layer will prove detrimental if action is not taken. For example, research shows the strong possibility of a number of health risks associated with increased UV-B exposure as a direct result of the thinning ozone layer. These health risks include skin cancer, immunosuppression, cataracts, and snow blindness.

Furthermore, the possibility that increased UV-B radiation results in lower crop yields should provide a wakeup call to those who feel the thinning ozone layer is not a problem. For if we are not able to breed UV-B resistant plants, the worlds food supply would become dramatically decreased, resulting in higher levels of famine and malnutrition.

Studies from Antarctica tell society that increased UV radiation can directly affect the food chain. Recall the decrease in food supply as a result of reduced levels of photoplankton in Antarctica. This may seem like an isolated, non-significant, and remote problem; however, this incident illustrates the dangers of reduced food supply and alteration of the food chain as a result of the thinning ozone layer. Even though the photoplankton were located at the bottom of the food chain, the whole chain was affected. In the future, problems like this could potentially affect the global food web and result in an overall decrease in food supply. Thus, realize that the dangers posed by ozone depletion are real now, and will be in the future, if action is not taken.

#### Take Action: Teamwork does the trick

Although the earth will be able to heal itself if the CFC level continues to stay as it is, the depletion of the ozone layer is still a problem that society should be concerned with. In order for earth to repair the damage humans have posed on the ozone layer, society must take an active role. There are many tasks individuals can involve themselves in to help combat the problem of ozone depletion. First of all, one can simply check product labels for ozone friendly status. Many companies have gone to great lengths to remove CFCs from their products. These products do not do as much damage to the ozone

layer, and thus, are denoted as ozone friendly. A collaborative effort by society not using products with CFCs is a major step toward the healing of the ozone layer.

Unfortunately, many products still used in society are detrimental to the ozone layer. For example, CFCs marketed under the trade name Freon are used in appliances with refrigerants such as refrigerators and air conditioners. When individuals must dispose of products with refrigerants in them, certain actions must be taken in order to prevent the CFCs from escaping from the disposed product. For example, when an agency, such as a waste hauling company, comes to pick up the unwanted appliance, check to make sure refrigerant-recovery equipment is used by the agency. This equipment allows for the disposal of refrigerants without damage to the ozone layer.

Society can also help the problem of ozone depletion through education, as well as through various donations. If individuals contribute time or money to environmental agencies focused on healing the ozone layer, the agencies will be able to organize activities promoting the understanding of the ozone problem. If society is educated through these means, more individual efforts will be taken to make ozone smart decisions such as using ozone friendly products.

Although thinning ozone may not directly affect the generation growing up today, future generations depend on the actions taken now. Thus, it is important for society to recognize that the thinning ozone layer is a problem

and to take action in order to ensure the safety and survival of future generations.

#### Result

It is very much clear from the above discussions that there is an urgent need of the hour to realize the importance of the very critical ozone layer which is just like a god gift to human civilisation.

It acts as a protection shield which prevents the dangerous and harmful UV rays entering the earth surface. It job is to filter those harmful particles present in the rays that can lead to severe destruction of mankind, wealth and property.

The impact of ozone depletion can be seen on the world's economy today it has slow down the progress of not only any particular nation rather it is a global phenomenon which is hindering development.

According to surveys conducted it has been seen that year 1998 observed max. decline in amount of ozone depletion.

#### **SUMMARY**

The ozone layer is essential for protecting society from harmful UV radiation by acting as a filter. However, this protective layer has been thinning due to three main sources: human activity, natural sources, and volcanoes. Human activity is responsible for the most damage to the ozone layer, thus, society should recognize that much can be done to prevent ozone layer damage.

In 1985, in a region over Antarctica, the yearly polar vortex had caused the ozone layer to deplete so greatly, that it could be classified as a hole. In 1996, this hole was large enough to cover Antarctica.

The depletion of the ozone layer does not come without problems. Scientific research has suggested the probability that increased UV-B radiation as a result of the thinning ozone layer leads to increased cases of skin cancer, immuno-suppression, cataracts, and snowblindness due to radiation damage of the DNA. Additionally, experiments have shown a correlation between increased UV radiation and crop damage due to UV radiation damaging the plants DNA. Some scientists, however, feel that this will not be a problem in the future due to the possibility of breeding UV resistant crops and plants.

Many national governments and agencies recognized the problem of ozone depletion, and therefore, united in 1987 to sign the Montreal Protocol. This agreement was implemented to decrease CFC levels in order to help protect the thinning ozone layer.

Clearly, ozone depletion is a dangerous problem due to possible disease outbreaks and famine as a result of increased UV-B radiation. However, society can collectively attempt to combat this problem by relatively simple means such as education and the practice of ozone smart behavior. For if society acts now, future generations will be handed a safe and healthy planet.