Statistic decision making final exam

ASSIGN BUSTER

Exercise 2: Sample Design and Evaluation The information can be summarized as follows: N1= N2 Standard Deviation= 15 Difference in Performance $=5$ Power $=.8$ After entering the given information, the window looks as follows, which shows us that $\mathrm{N} 1=\mathrm{N} 2=142$ In the window above, change the power to . 9 , then $\mathrm{N} 1=\mathrm{N} 2=190$ In the window above, change the sigma1 $=15$, sigma2 $=12$, and don't select Egual Sigmas checkbox, thus I get $\mathrm{N} 1=\mathrm{N} 2=156$ In the window above, change the $\mathrm{N} 1=200$ (control group), N2 = 120 (testing group), and select Independent in Allocation, thus I get .046 to be the power. $=((61-64.5)-(0)) / v((16 * 16) / 200+(13 * 13) / 120)=(-$ 3. 5) $/ 1.6396=-2.1347$ Critical Value: Z ? $/ 2=$ Z0. 05/2= @qnorm(1-0. $05 / 2)=1.96$ When comparing the test statistic to the critical value: $Z=2$. $1347>1.96$, we reject the null hypothesis. We can calculate the P-value using the EViews command: Show @tdist (t, d. f) In this EViews command, t stands for the appropriate test statistic and d. f are the degrees of freedom. The appropriate test statistic was calculated above, namely $Z=2$. 347. For the degrees of freedom, we can insert NA+NB-2. Show @tdist (2. 1347, $318)=0.03355$ Since the P-value $=0.033550$, and $? 1=0.86361050000 \mathrm{Is}$ price c assessval Dependent Variable: PRICE Method: Least Squares Date: 01/21/13 Time: 16: 07 Sample: 1650 IF PRICE> 50000 Included observations: 562 VariableCoefficientStd. Errort-StatisticProb. C12314. 913021. 9884. 0751030. 0001 ASSESSVALO. 8230410. 02269536. 265460. 0000 R-squared0. 701363 Mean dependent var113069. 1

Adjusted R-squared0. 700829 S. D. dependent var51534. 97 S. E. of regression28187. 83 Akaike info criterion23. 33472 Sum squared resid4. 45E+11 Schwarz criterion23. 35013 Log likelihood-6555. 056 Hannan-Quinn
criter. 23. 34074 F-statistic1315. 184 Durbin-Watson stat1. 337129 Prob(Fstatistic)0. 000000 Estimated intercept (b0): 12314. 91 Estimated slope (b1): 0. 823041 The result in (g) does NOT change my conclusion from part (e), since now, ? $0=12314.91>0$, and ? $1=0.823041$

