
Concurrency control
in database systems

https://assignbuster.com/concurrency-control-in-database-systems/
https://assignbuster.com/concurrency-control-in-database-systems/
https://assignbuster.com/

Concurrency control in database systems – Paper Example Page 2

The purpose of concurrency control is to ensure that one users work does not

inappropriately influence another user's work. In some cases, these

measures ensure that a user gets the same result when processing with

other users as that person would have received if processing alone. In other

cases, it means that the user's work Is Influenced by other users but In an

anticipated way. When many transactions take place at the same time, they

are called concurrent transactions.

Managing the execution of such transactions is called concurrency intro. As

you can imagine, concurrency control is especially important in a multiuse

database environment. Deadlock: When dealing with locks two problems can

arise, the first of which being deadlock. Deadlock refers to a particular

situation where two or more processes are each waiting for another to

release a resource, or more than two processes are waiting for resources in a

circular chain. Deadlock is a common problem in multiprocessing where

many processes share a specific type of mutually exclusive resource.

Some computers, usually those Intended for the time-sharing and/or real-

time markets, are often equipped with a hardware lock, or hard lock, which

guarantees exclusive access to processes, forcing serialization. Deadlocks

are particularly disconcerting because there is no general solution to avoid

them. A fitting analogy of the deadlock problem could be a situation like

when you go to unlock your car door and your passenger pulls the handle at

the exact same time, leaving the door still locked. If you have ever been in a

situation where the passenger is impatient and keeps trying to open the

door, It can be very frustrating.

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 3

Basically you can get stuck in an endless cycle, and nice both actions cannot

be satisfied, deadlock occurs. Livestock: Livestock is a special case of

resource starvation. A livestock is similar to a deadlock, except that the

states of the processes involved constantly change with regard to one

another wile never progressing. The general definition only states that a

specific process Is not progressing. For example, the system keeps selecting

the same transaction for rollback causing the transaction to never finish

executing.

Another livestock situation can come about when the system is deciding

which transaction gets a lock and which waits in a conflict situation. An

illustration of livestock occurs when numerous people arrive at a four way

stop, and are not quite sure who should proceed next. If no one makes a

solid decision to go, and all the cars just keep creeping into the intersection

afraid that someone else will possibly hit them, then a Basic Timestamp:

Basic timestamp is a concurrency control mechanism that eliminates

deadlock.

This method doesn't use locks to control concurrency, so it is impossible for

deadlock to occur. According to this method a unique timestamp is assigned

to each transaction, usually showing when it was started. This effectively

allows an age to be assigned to transactions and an order to be assigned.

Data items have both a read- timestamp and a write-timestamp. These

timestamps are updated each time the data item is read or updated

respectively. Problems arise in this system when a transaction tries to read a

data item which has been written by a younger transaction.

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 4

This is called a late read. This means that the data item has changed since

the initial transaction start time and the solution is to roll back the

timestamp and acquire a new one. Another problem occurs when a

transaction tries to write a ATA item which has been read by a younger

transaction. This is called a late write. This means that the data item has

been read by another transaction since the start time of the transaction that

is altering it. The solution for this problem is the same as for the late read

problem. The timestamp must be rolled back and a new one acquired.

Adhering to the rules of the basic timestamp process allows the transactions

to be serialized and a chronological schedule of transactions can then be

created. Timestamp may not be practical in the case of larger databases

with gig levels of transactions. A large amount of storage space would have

to be dedicated to storing the timestamps in these cases. Main Insights The

requirement for concurrency control arose to ensure correctness when a

shared database is updated by multiple transactions concurrently [Gray and

Reuters 1992]. PL (Two-phase Locking) The two-phase locking rule simply

states that no transaction should request a lock after it releases one of its

locks. Alternatively, a transaction should not release a lock until it is certain

that it will not request another lock. PL algorithms execute orientations in

two phases. Each transaction has a growing phase, where it obtains locks

and accesses data items, and a shrinking phase, during which it releases

locks. The lock point is the moment when the transaction has achieved all its

locks but has not yet started to release any of them.

Thus the lock point determines the end of the growing phase and the

beginning of the shrinking phase of a transaction. It has been proven that

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 5

any history generated by a concurrency control algorithm that obeys the PL

rule is serialized [Cesarean et al. , 1976]. Deadlock Management Any locking-

based concurrency control algorithm may result in deadlocks, since there is

mutual exclusion of access to shared resources (data) and transactions may

wait algorithms that require the waiting of transactions (e. G. , strict

Timestamp Ordering) may also cause deadlocks.

Therefore, the distributed DB'S requires special procedures to handle them.

A deadlock can occur because transactions wait for one another. Informally,

a deadlock situation is a set of requests that can never be granted by the

concurrency control mechanism. A deadlock is a permanent phenomenon. If

one exists in a system, it will not go away unless outside intervention takes

place. This outside interference may come from the user, the system

operator, or the software system (the operating system or the distributed

DB'S).

Pessimistic Concurrency Control Pessimistic Concurrency Control assumes

that conflicts will happen Pessimistic Concurrency Control techniques detect

conflicts as soon as they occur and resolve them using blocking. Locking

Locking is " pessimistic" because it assumes that conflicts will happen. The

concept of locking data items is one of the main techniques used for

controlling the concurrent execution of transactions. A lock is a variable

associated with a data item in the database. Generally there is a lock for

each data item in the database.

A lock describes the status of the data item with respect to possible

operations that can be applied to that item. It is used for synchronizing the

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 6

access by concurrent transactions to the database items. - A transaction

locks an object before using it - When an object is locked by another

transaction, the requesting transaction must wait Disadvantages of locking

Lock management overhead. Deadlock detection/resolution. Concurrency is

significantly lowered, when congested nodes are locked.

To allow a transaction to abort itself when mistakes occur, locks can't be

released until the end of transaction, thus currency is significantly lowered

Conflicts are rare. (We might get better performance by not locking, and

instead checking for conflicts at commit time.) Pessimistic Locking: This

concurrency control strategy involves keeping an entity in a database locked

the entire time it exists in the database's memory. This limits or prevents

users from altering the data entity that is locked.

There are two types of socks that fall under the category of pessimistic

locking: write lock and read lock. With write lock, everyone but the holder of

the lock is prevented from reading, updating, or deleting the entity. With

read lock, other users can read the entity, but no one except for the lock

holder can update or delete it. Timestamp There is a strong relationship

among the concurrency control problem, the deadlock management

problem, and reliability issues. This is to be expected, since together they

are usually called the transaction management problem.

The concurrency management facility is required. If a locking-based

algorithm is used, deadlocks will occur, whereas they will not if timestamp is

the chosen alternative. Timestamp-Based Concurrency Control Algorithms

Unlike locking-based algorithms, timestamp-based concurrency control

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 7

algorithms do not attempt to maintain serialization by mutual exclusion.

Instead, they select, a prior', a serialization order and execute transactions

accordingly. A timestamp is a simple identifier that serves to identify each

transaction uniquely and is used for ordering.

Uniqueness is only one of the properties of timestamp generation. The

second property is monotonic. Two timestamps generated by the same

transaction manager should be monotonically increasing. Thus timestamps

are values derived from a totally ordered domain. It is this second property

that differentiates a timestamp from a transaction identifier. Timestamp-

Based Protocols Each transaction is issued a timestamp when it enters the

system. If an old transaction It has time-stamp TTS(It), a new transaction TX

is assigned time-stamp TTS(TX) such that TTS(It) The protocol manages

concurrent execution such that the time-stamps determine the serialization

order. In order to assure such behavior, the protocol maintains for each data

Q two timestamp values: W-timestamp(Q) is the largest time-stamp of any

transaction that executed write(Q) successfully. R- timestamp(Q) is the

largest time-stamp of any transaction that executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read and write

operations are executed in timestamp order. Suppose a transaction It issues

a read(Q) 1.

If TTS(It) 0 W-timestamp(Q), then It needs to read a value of Q that was

already overwritten. Hence, the read operation is back. Rejected, and It is

rolled 2. If W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to the maximum of R- timestamp(Q) and TTS(It).

Suppose that transaction It issues write(Q). If TTS(It) < R-timestamp(Q), then

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 8

the value of Q that Ti is producing was needed previously, and the system

assumed that that value would never be produced. Hence, the write

operation is rejected, and Ti is rolled back.

If TTS(It) < W-timestamp(Q), then Ti is attempting to write an obsolete value

of Q. Hence, this write operation is rejected, and Ti is rolled back. Otherwise,

the write operation is executed, and W- timestamp(Q) is set to TS(Ti).

Another alternative is to make use of transaction timestamps to prioritize

transactions and resolve deadlocks by aborting transactions with higher (or

lower) priorities. To implement this type of prevention method, the lock

manager is modified as follows. If a lock request of a transaction T is denied,

the lock manager does not automatically force Ti I to wait.

Instead, it applies a prevention test to the requesting transaction and the

transaction that currently holds the lock (say TX). If the test is aborted.

Rollback A rollback is the operation of restoring a database to a previous

state by canceling a pacific transaction or transaction set. Rollbacks are

either performed automatically by database systems or manually by users.

When a database user changes a data field but has not yet saved the

change, the data is stored in a temporary state or transaction log. Users

querying the unsaved data see the unchanged values.

The action of saving the data is a commit; this allows subsequent queries for

this data to show the new values. However, a user may decide not to save

the data. Under this condition, a rollback command manipulates the data to

discard any changes made by the user, and does o without communicating

this to the user. Thus, a rollback occurs when a user begins changing data,

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 9

realizes the wrong record is being updated and then cancels the operation to

undo any pending changes. Rollbacks also may be issued automatically after

a server or database crash, e. . After a sudden power loss. When the

database restarts, all logged transactions are reviewed; then all pending

transactions are rolled back, allowing users to reenter and save appropriate

changes. A transaction always terminates, even when there are failures. If

the transaction can complete its task successfully, we say that the

orientation commits. If, on the other hand, a transaction stops without

completing its task, we say that it aborts. Transactions may abort for a

number of reasons, which are discussed in the upcoming chapters.

In our example, a transaction aborts itself because of a condition that would

prevent it from completing its task successfully. Additionally, the DB'S may

abort a transaction due to, for example, deadlocks or other conditions. When

a transaction is aborted, its execution is stopped and all of its already

executed actions are undone by returning the database to the state before

their execution. This is also known as rollback. Optimistic Concurrency

Control Optimistic Concurrency Control assumes that conflicts between

transactions are rare.

Does not require locking Transaction executed without restrictions Check for

conflicts Just before commit Optimistic Concurrency Control (Terminology

used) Readers(It): Set of objects read by Transaction It. Writes(It): Set of

objects modified by Transaction It. Optimistic algorithms, on the other hand,

delay the validation phase until Just before the write phase. Thus an

operation submitted to an optimistic scheduler is never delayed. The read,

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 10

compute, and write operations of each transaction are processed updates on

local copies of data items.

The validation phase consists of checking if these updates would maintain

the consistency of the database. If the answer is affirmative, the changes are

made global (I. E. , written into the actual database). Otherwise, the

transaction is aborted and has to restart. Types of locking Technique The two

Phase locking protocol Time Stamping Protocol Validation Based protocol The

two-phase locking protocol is used to ensure the serialization in Database.

This protocol is implemented in two phase: Growing Phase -In this phase we

put read or write lock based on need on the data.

In this phase we does not release any lock. Shrinking Phase -this phase is

Just reverse of growing phase. In this phase we release read and write lock

but doesn't put any lock on data. In Time stamping Protocol we select

sequence of transaction in advance by using Time stamping concept. We add

a special variable time stamp (a unique, fixed non decreasing) to each

transaction in system. This number can be system clock value. When a new

transaction entered in the system, current value of cook is assigned to

orientation as time stamp value.

Value of time stamp is incremented every time after a new transaction

interred in the system. Validation Based protocol Two-phase locking protocol

and Time stamping Protocol are slow in working because they worked in two

steps, so we use validation based protocol which is faster than Two-phase

locking protocol and Time stamping Protocol. In Validation based protocol, it

https://assignbuster.com/concurrency-control-in-database-systems/

Concurrency control in database systems – Paper Example Page 11

doesn't update entire data base in one step. It keeps local copies of all

updates during transaction execution. It works in three steps Read Phase

In this step transaction is activated and it reads last committed value from

DB and put these value in local variables. All updates implemented in these

local variable of database. Validation Phase check consistency of data base

after modification performed in database. Write Phase If validation phase say

that data base is in consistent state then all update made by transaction

which are in local variable are applied in database for permanent storage. If

validation phase say that database is not consistent or it violate serialization

then it discard/rollback all updates and it restart transactions.

https://assignbuster.com/concurrency-control-in-database-systems/

	Concurrency control in database systems

