
Prelude to
programming

Technology

https://assignbuster.com/essay-subjects/technology/
https://assignbuster.com/prelude-to-programming/
https://assignbuster.com/prelude-to-programming/
https://assignbuster.com/

 Prelude to programming – Paper Example Page 2

As you took your first step you had to figure out how to execute the following

process: Put one foot in front of the other At some point you did just that,

and it was a major accomplishment. But this didn't get you very far. If you

wanted to walk across the room, you needed to extend this process to the

following: put the left foot in front of the right foot Put the right foot in front

of the left foot Put the left foot in front of the right foot Put the right foot in

front of the left foot and so forth This is not a very efficient way to describe

what you did.

A detailed list of your actions as you ambled all over the house would be

very long. Because you did the same thing over and over, the following is a

much better way to describe your actions: Repeat Put the right foot in front

of the left foot until you get across the room This way is short, convenient,

and just as descriptive. Even if you want to take hundreds or thousands of

steps, the process can still be described in four lines. This is the basic idea

off loop. Walking is just one of many examples of loops in your daily life.

For example, if you have a largefamilyand need to prepare lunches in the

morning for everyone, you can do the following: Make a sandwich Wrap the

sandwich Place the sandwich in a lunch bag place an apple in the lunch bag

Place a drink in the lunch bag Continue until lunches have been made for

everyone in the family Where else do you encounter a looping process? How

about eating a sandwich (one bite at a time) or brushing your teeth? If you

have a programming class on Tuesdays at 1 1100 a. M. , you go to class

every Tuesday at 1 1 a. M. Until the end of the semester.

https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 3

You do the " go to programming class" loop until a certain day. After you

read this chapter (one word at a time), you'll be ready to place loops in your

programs as well. 4. 1 An Introduction to Repetition Structures: Computers

Never Get Bored! 165 4. 1 An Introduction to Repetition Structures:

Computers Never Get Bored! You have already learned that all computer

programs are created from three basic constructs: sequence, decision, and

repetition. This chapter discusses repetition, which in many ways is the most

important construct of all. We are lucky that computers don't find repetitious

tasks boring.

Regardless of what task we ask a computer to perform, the computer is

virtually useless if it can perform that task only once. The ability to repeat

the same actions over and over is the most basic requirement in

programming. When you use any software application, you expect to be able

to open the application and do certain tasks. Imagine if your word processor

Was programmed to make your text bold only once or if your operating

system allowed you to use the copy command only once. Each computer

task you perform has been coded into the software by a programmer and

each task must have the ability to be used over and over.

In this chapter, we will examine how to program a computer to repeat one or

more actions many times. Pop Basics All programming languages provide

statements to create a loop. The loop is the basic component of the

repetition structure. These statements are a block of code, which under

certain conditions, will be executed repeatedly. In this section, we will

introduce some basic ideas about these structures. We will start with a

simple illustration of a loop shown in Example 4. 1 . This example uses a
https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 4

type of loop called a Repeat... Until loop. Other types of loops are discussed

throughout the chapter. Example 4.

Simply Writing Numbers This program segment repeatedly inputs a number

from the user and displays that number until the user enters O. The program

then displays the words List Ended. 2 3 5 6 7 Declare Number As Integer

Write " Please enter a number: ' Input Number Write Number Until Number -

Write " List Ended" In the pseudopodia, the loop begins on line 2 with the

word Repeat and ends on line 6 with Until Number O. The loop body is

contained in lines 3, 4, and 5. These are the statements that will be executed

repeatedly. The body of a loop is executed until the test condition following

the word Until on line 6 becomes true.

In this case, the test condition becomes true when the user types a O. At

that point, the loop is exited and the statement on line 7 is executed. 1 66

What Happened? Let's trace the execution of this program, assuming that

the user enters the numbers 1, 3, and O, in that order: When execution

begins the loop is entered, the number 1 is input, and this number is

displayed. These actions make up the first pass through the loop. The test

condition, " Number - = O? " is now " tested" on line 6 and found to be false

because at this point, Number =-? Therefore, the loop is entered again.

The program execution returns to line 2 ND the body of the loop is executed

again. (Recall that the double equals sign, -? 2, is a comparison operator and

asks the question, " Is the value of the variable Number the same as O?) On

the second pass through the loop, the number 3 is input (line 4) and

displayed (line 5), and once again the condition (line 6), Number = = O is

https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 5

false. So the program returns to line 2. On the third pass through the loop,

the number O is input and displayed. This time the condition Number == O

is true, so the loop is exited and execution transfers to line 7, the statement

after the loop.

The words List Ended are displayed and the program is complete. Iterations

We have said that the loop is the basic component of the repetition

structure. One of the main reasons a computer can perform many tasks

efficiently is because it can quickly repeat tasks over and over. The number

of times a task is repeated is always a significant part of any repetition

structure, but a programmer must be aware of how many times a loop will

be repeated to ensure that the loop performs the task correctly. In computer

lingo a single pass through a loop is called a loop iteration.

A loop that executes three times goes through three iterations. Example 4. 2

presents the iteration process. Example 4. 2 How Many Iterations? This

program segment repeatedly asks the user to input a name until the user

enters " Done. " Declare Name As String Write " Enter the name Of your

brother or sister: " Input Name Write Name until Name " Done" and Elizabeth

Drake. Published by Addison-Wesley. Copyright C 2011 by This pseudopodia

is almost the same as shown in Example 4. 1 except that the input in this

example is string data instead Of integer data.

The loop begins on line 2 with the word Repeat and ends on line 6 with until

Name " Done". The loop body is contained in lines 3, 4, and 5. How are the

iterations counted? Each time these statements are executed, the loop is

said to have gone through one iteration. 167 Let's assume this program

https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 6

segment is used to enter a list of a user's brothers and sisters. If Hector has

two brothers named Joe and Jim and one sister named Ellen, the loop would

complete four iterations. Joe would be entered on the first iteration, Jim on

the next iteration, Ellen on the third iteration, and the word Done would be

entered on the fourth iteration.

If Marie, on the other hand, had only one sister named Anne, the program

would go through two iterations-? one to enter the name Anne and one to

enter the word Done. And if Bobby were an only child, the program would

only complete one iteration since Bobby would enter Done on the first

iteration. Later in this chapter, We will see how to create a loop that does not

require that the test condition count as one of the iterations. Beware of the

Infinite Loop! In Example 4. 1 , we saw that the user was prompted to enter

any number and that number would be displayed on the screen.

Fifth user started with the number 234789 and worked his way down,

entente 234, 788, then 234, 787, and so forth, the computer would display

234, 790 numbers (including the O that terminates the loop). However, after

the user entered the last number, O, the loop would end. It would be a lot of

numbers, but it would end. On the other hand, what would happen if the loop

was written as shown in Example 4. 3? Example 4. 3 The Dangerous Infinite

Loop In this example, we change the test condition of Example 4. 1 to a

condition that is impossible to achieve. The user is asked to enter a number

on line 2 and line 3 takes in the user's input.

Line 4 sets a new variable, Computerized equal to that number plus one. The

loop will continue to ask for and display numbers until the value of Number is

https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 7

greater than Computerized. That condition will never be met because on

each pass through the loop, regardless of what number the user enters,

Computerized will always be one greater. Thus, the loop will repeat and

repeat, continually asking for and displaying numbers. 8 Declare Number,

Computerized As Integer Write " Please enter a number: " Computerized =

Number + 1 Until Number > Computerized Write " The End" When will it

end?

Never. The words The End will never be displayed. If, as shown in Example 4.

3, a loop's test condition is never satisfied, then the loop will never be exited

and it will become an infinite loop. Infinite loops can reek and Elizabeth

Drake. Published by Addison-Wesley. Copyright @ 2011 by 168 havoc on a

program, so when you set up a loop and put in a test condition, be sure that

the test condition can be met. Computers don't mind doing a task many

times, but forever is simply too many! Don't Let the User Get Trapped in a

Loop There is one more important point to mention about Examples 4. And 4.

2. In both of these examples, we have test conditions that can easily be met.

As soon as a user enters O for the number in Example 4. 1, the loop ends. As

soon as the user enters the word Done in Example 4. 2, the loop ends. But

owe would the user know that O or Done is the cue for the program segment

to end? It is important for the programmer to make it clear, by means of a

suitable prompt, how the user will terminate the action of the loop. In

Example 4. 1, the following would be a suitable prompt: Write " Enter a

number; enter O to quit. In Example 4. 2, the following would be a suitable

prompt: Write " Enter the name of your brother or sister:" Write " Enter the

word Done to quit. " In the type of loops we used in these two examples, the

https://assignbuster.com/prelude-to-programming/

 Prelude to programming – Paper Example Page 8

loop continues until the user ends it. Other loops end without user input.

Regardless of what type f loop you write, you always want to avoid the

possibility that the loop will continue without end. Therefore, you must

ensure that the test condition can be met and, if the user must enter

something special to end the loop, be sure it's clear.

Relational and Logical Operators The condition that determines whether a

loop is reentered or exited is usually constructed with the help Of relational

and logical operators. We will briefly review these operators here. The

following are the six standard relational operators and the programming

symbols we will use in this book to represent them: equal to (or " is the same

as"): - to equal to: less than: < less than or equal to: greater than: > greater

than or equal to: >= prelude to Programming: Concepts and Design, Fifth

Edition, by Stewart Event All six operators can be applied to either numeric

or character string data.

Note that the double equals sign, the comparison operator (==) is different

from the assignment operator While the assignment operator assigns the

value on the right side of the equals sign to the variable on the left side, the

comparison operator compares the values of the variable or expression on

the left side of the operator to the value of the variable, expression, number,

r text on the right side. It returns only a value of false (if the two values are

different) or true (if the two values are the same).

https://assignbuster.com/prelude-to-programming/

	Prelude to programming

