Tutorial solutions complex numbers and sequence essay sample

ASSIGN BUSTER

1. a) $\mathrm{Z1}=2-5 \mathrm{i}, \mathrm{z2}=1=2 \mathrm{i}$
$\mathbf{Z 1}=\mathbf{2 2}+\mathbf{5 2}=\mathbf{4}+\mathbf{2 5}=\mathbf{2 9}$
b) $=(2-5 i)(1+2 \mathrm{i})=2+4 \mathrm{i}-5 \mathrm{i}+10=12-\mathrm{i}$
c) $(2=\{(2-5 i)+[3(1+2 \mathrm{i})]\} 2$
$=\{(2-5 i+3+6 i\} 2$
$=\{(5+i\} 2$
$=25+10 \mathrm{i}-1$
$=24+10 \mathrm{i}$
d) $\{2=+2(1+)+(1+) 2$
$=(2-5 i) 2=4-10 i+25=29-10 i$
$2(1+)=2(2-5 i)(1+1+2 i)=(4-10 i)(2+2 i)=3+8 i-20 i+20$
$=28-12 \mathrm{i}$
$(1+) 2=(1+1=2 i) 2=(2+2 i) 2=4+8 i-4=8 i$
$\{2=29-10 i+28-12 i+8 i=57-14 i$
2. a) $==$
$=+$
b) $(2+\mathrm{i}) 3=23+3(22 \mathrm{i})+3(2 \mathrm{i} 2)+\mathrm{i} 3=8+12 \mathrm{i}-6-\mathrm{I}=2+11 \mathrm{i}$
c) $3+=3 i+i$
$=+i$
$=15+6 \mathrm{i}$
https://assignbuster.com/tutorial-solutions-complex-numbers-and-sequence-
essay-sample/
$=21 \mathrm{i}$
d) - $===$
3. a)
$\mathbf{z}=+\mathbf{i}$ and $\mathbf{w}=1+$
$Z=r[\cos \theta+i \sin \theta]$
$\theta==$
$r==2$
$z=2[\cos +i s i n]$
$\mathrm{w}=\mathrm{r} 1(\cos \alpha+\mathrm{i} \sin \alpha)$
$r==2$
$\theta==$
$\mathrm{w}=2[\cos +\mathrm{isin}]$
$\mathrm{zw}=\mathrm{rr} 1[\cos (\theta+\alpha)+i \sin (\theta+\alpha)]$
$=2 * 2[\cos +i s i n$
$=4[\cos +\mathrm{isin}$
$=[[\cos +i \sin$
$=\cos -+\mathrm{isin}$
$=\cos -\mathrm{isin}$
$=r[\cos \theta-i \sin \theta]=2[\cos -\mathrm{isin}]$
b) $z=+4 i$ and $w=-3-$
$\mathbf{Z}=\mathbf{r}[\cos \theta+\mathbf{i s i n} \theta]$
$\theta==$
https://assignbuster.com/tutorial-solutions-complex-numbers-and-sequence-
essay-sample/
```
r= = = 8
Z = 8[cos + isin]
w =-3 -
w = rl (cos \alpha + isin\alpha
\alpha=== ; since it falls within the third quadrant
r== = 3
w = 3 [cos+ isin]
zw = rr1[cos(0+\alpha) + isin (0+\alpha)]
= 8* 3[cos + isin
= 24 [cos + isin
= [[cos + isin
= [[cos + isin}
=[cos + isin]
=r[\operatorname{cos}0-i\operatorname{sin}0]=8[\operatorname{cos}-\textrm{isin}]
4. show that
a) \(=+\)
```


Let $\mathbf{Z 1}=\mathbf{a}+\mathbf{b i}$ and $\mathbf{Z 2}=\mathbf{x}+\mathbf{y i}$

$Z 1=a-b i$ and $Z 2=x-y i$
= . =
$=$
b) $=$.

Let $\mathbf{Z 1}=(\mathbf{r}, \boldsymbol{\theta})=\mathbf{r}[\cos \theta+\mathbf{i s i n} \theta],=\mathbf{r}[\cos \theta-\mathbf{i} \sin \theta]$,
And $Z 2=(R, \alpha)=R[\cos \alpha+i \sin \alpha],=R[\cos \alpha-i \sin \alpha]$
$=\operatorname{Rr}[\cos (\theta+\alpha)-\mathrm{i} \sin (\theta+\alpha)$
$=R$. r but $R=$ and $r=$
$=$
c) $=$
$\mathbf{z}=\mathbf{r}[\cos \theta+\mathbf{i s i n} \theta]$
r. r[$\cos 2 \theta+i \sin 2 \theta]$
$=r 2$, but $=r$
= .
d) $Z=r=r[\cos \theta+i \sin \theta]$

$\mathbf{r}[\cos \boldsymbol{\theta}-\mathbf{i s i n} \theta]$

But $=\cos \theta-i \sin \theta$
r
5. a) $(z+1)(2-i)=3-4 i$
$\mathbf{z}+\mathbf{1}===\mathbf{2}-\mathbf{i}$
b) $=1$
let $\mathbf{w}=\mathbf{3}+\mathbf{4 i}$
$==5$
$==1$
$=1$
$=1 / 5$
$===1 / 5$
6. $Z 5=-32$

Let $z=(\rho, \theta)$ and $w=(r, \alpha)=\mathbf{- 3 2}$
$\rho 5[\cos 5 \theta+i \sin 5 \theta]=r[\cos \alpha+i \sin \alpha]$
$\rho==2, \alpha=\pi$
$\theta=$
for other solutions of $\mathbf{z}, \boldsymbol{\theta}=+\mathbf{k} 2 \pi / 5$
$k=0$
$\mathrm{z}=\mathbf{2}\{\boldsymbol{\operatorname { c o s }}\}$
$\mathrm{k}=1 \theta=+=$
$z=2\{\cos \}$
$k=2, \theta=+=$
$z=2\{\cos \}=-2$
$k=3, \theta=+=$
$Z=2\{\cos \}$
$K=4, \theta=+=$
$z=2\{\cos \}$
b) $Z 4+8 i=0$

$\mathbf{Z 4}=\mathbf{- 8 i} \boldsymbol{\sigma}=$ falls within third quadrant

$\mathrm{R}==1.682$
$4 \theta=$
$\theta=$
$k=0$

$$
\begin{aligned}
& z=1.682[\text { cos }+ \text { isin } \\
& k=1 \\
& \theta=+=
\end{aligned}
$$

$$
\mathrm{z}=1.682[\cos +\mathrm{isin}
$$

$$
k=2
$$

$$
\theta=+=
$$

$\mathrm{z}=\mathbf{1 . 6 8 2}[\cos +\mathrm{isin}$
$k=3$
$\theta=+=$
$\mathrm{z}=1.682[\cos +\mathrm{isin}$
c) $z 3=-1+$
$R==1.587$
$3 \theta=\pi-=\pi-\pi / 3=$
$\theta=$
at $\mathrm{k}=0$
$\mathrm{tz}=1.587[\cos +\mathrm{isin}$
$\mathrm{k}=1$
$\theta=+=$

$\mathrm{z}=1.587$ [cos isin

$k=2$
$\theta=+=$

$\mathrm{z}=1.587$ [cos isin

7. $\mathrm{Z} 2-\mathrm{iz}+(1+3 \mathrm{i})=0$

The sum of numbers $=\mathbf{- i}$

Product $=(1+3 i)$
Nos. (1-2i) and (-1 + i)
$Z=-(1-2 i)$
and $z=-(-1+i)$
$=-1+2 i$
$=1-i$

The roots of z are ($\mathbf{- 1 + 2 i}$) and (1-i)

Sequence and series tutorial solutions
1.
a) $\{2,5,8,11\}$ an $=2+3(n-1)$, where $n=1,2,3$,
b) $\{1 / 2,1 / 4,1 / 6\}$ aa $=1 /(2 n)$, where $n=1,2,3$,
c) $\{-1,-1 / 3,3 / 5,-5 / 6\}$ an $=(-1) n$
d) $\{1,0,1,0,1\}$ an $=$
e) $\{0,1 / 2,0,1 / 2,0\}$ an $=$
2.
a) $\{n-\}=\infty$

Thus is the limit doess not exist and its divergent

b)
$==$

the function converges to zero at infinity

c) $====\infty$,

Since

The limit does not exist thus it is divergent.
d) $\operatorname{Sin}(+)==1$

Since

$+++++++++++++$

Since

$++++++$
e) $==\infty$

Since

$++++++++++++++$

Since

$++++++++++++++^{*}+++$
f) $==.=1.1=1$

Since

$+++++++++++++++$

Since

++++++++++++++ + $^{*}+++++++$
g) $==$
$=0$

Since

$++++++++++++++++$

Since

$+++++++$
h) $=$
$=\ln \pi=0$
$==1$

Since

$+++++++++++++++++$

Since

$++++++++++++$
i) $+=\ln \pi+=0$

Since

$++++++++++++++++++$

Since

$++++++++++++++$
3.
a) $5+3++++$

Since

$+++++++++++++++++++$

Since

$+++++++$
$=3 / 5<1$ thus the series converges.

Since

$++++++++++++++++++++^{*}+++$
b) $2+0.4+0.08+0.016++$

Since

$+++++++++++++++++++++$

Since

the series converge ; since $=0.2<1$ the sum $====$ c) $1 / 9-1 / 3+1-3+(-$ 1) $(n+1) a(3) n-1$

Since

$+++++++++++++++++++++$

Since

$+++++++$
d) ++++

Since

$+++++++++++++++++++++++^{*}+$
e)

Since

$++++++++++++++++++++++++$

Since

$++++++++++++++++++++++++$
The sum $=0$
f) $=1 / 5+1 / 50+1 / 500+1 / 5000++a(1 / 10) n-1$

Since

$+++++++++++++++++++++++++$

Since

$++++++++$
The series converges since $=1 / 10<1$ The sum $===\mathrm{g}$)

Since

$++++++++++++++++++++++$
Sk=-\}+\{\}++++++
SK $=1 / 2+1 / 4=3 / 4$
$=s k=3 / 4$
4)
a)

Since

$++++++++++++++++$
And $=$ thus the series is divergent.
b)

Since

$++++++++++++++++++++++++++++$

Since

++++
Therefore; $=\infty$
Thus the series is divergent
c)

Since

```
+++++++++++
```

$=0$ an converges, so that $=0$

Since

$$
++++++++++++++++++++++++++++++^{*}++++
$$

d)

Since

$+++++++++++++++++++++++++++++$
e)

Since

$+++++++++++++++++++++++++++++$
5. $1+2 r+r 2+2 r 3+r 4+2 r 5+r 6+$
$=\{1+r 2+r 4+r 6++r 2 n\}+\{2 r++2 r 3+2 r 5++2 r 2 n+1\}$

Since

+++ if the series converge
-1

Since

$+++++++++++++++++$
-1

Since

$++++++++++++++++++++++++++$
6. determine whether the series is absolutely convergent, conditionally convergent or divergent
a)
$=$ the series is absolutely convergent.
b) -

$$
=-=1-1=0
$$

Since

$+++++++++++++++++++++++++++++++++$
c)
$=.=0$

Since

$+++++++++++++++++++++++++++++++++$
d)
$==1$ test inclusive

Since

$++++++++++++++++++$
$=\{\ln (x+5)\}=$ the series is divergent
7. Find the radius of convergence and interval of convergence of the power aeries
a)
= = . . $=$

Since

$+++++++++++++++++++$
2
I $(-8,2)$
b)
=. $=0<1$

Since

Since

++
c)
= . $=$

Since

$+++++++++++++++++++++++$
For so that I(-4, 3)
d)
$=3 x .=3 x$

Since

$++++++++++++++++++++++$
For

Since

$+++++++++$
e)
$=.=$

Since

$++++++++++++++++++$
For

Since

$++++++++++++$
f)
$=$. $=$

Since

$+++++++++++++++++++$
At

Since

$++++++++++++++++++++++++$
g)
$=$

Since

```
++++++++++++++++++++++++
```

At

Since

$++++++++++++++++++$
8. the Taylor series for the functions
a) $f(x)=3 x 2+2 x+1$ at $a=3$

Since

++++
$f 1(3)=6 x+2=20$
$\mathrm{f11}(3)=6$
$f(x)=34+20(x-3)+(x-3) 2$
b)
$f(x)=\sin x a=\pi / 2$

Since

$++++++++++++++++++$
$g(x)=$

Since

++++
h1(

Since

++++
h111(
$h(x)=1-+$
$f(x)=g(x) h(x)$
$f(x)=\{[1-] .[$
$f(x)=$
$f(x)=$
c) $f(x)=3 x a=1$

Since

+++
$f 1(x)=3 x \ln 3 f(1)=3 \ln 3$
$f 11(x)=3 x \ln 3 \cdot \ln 3 ; f 11(1)=3(\ln 3) 2$
$f 111(x)=3 x \ln 3 \cdot \ln 3 . \ln 3 ; f 111(1)=3(\ln 3) 3$
$f(x)=3+3 \ln 3(x-1)+++$
d) $f(x)=a=2$

Since

+++
$f 1(x)=, f 1(2)=1$
$\mathrm{f} 11(\mathrm{x})=\mathrm{f} 11(2)=2$
$\mathrm{f} 111(\mathrm{x})=, \mathrm{f} 111(2)=6$
$f(x)=1++++$
9. Maclaurin series for the following functions
a) $f(x)=$

Since

+++
$f 1(x)=f 1(0)=1$
$\mathrm{f} 11(\mathrm{x})=\mathrm{f} 11(0)=2$
$\mathrm{f} 111(\mathrm{x})=\mathrm{f111}(0)=6$
$f(x)=1+x++6+$
$f(x)=1+x+x 2+x 3++x n$
b)

Since

$+++++++$
$f(0)=1$
$f 1(x)=-3 \sin x=0$ at $x=0$
$\mathrm{fl1}(\mathrm{x})=-9 \cos \mathrm{x}=-9$ at $\mathrm{x}=0$
$\mathrm{f} 111(\mathrm{x})=27 \sin \mathrm{x}=0$
https://assignbuster.com/tutorial-solutions-complex-numbers-and-sequence-
essay-sample/
$\mathrm{f111}(x)=81 \cos x=81$
$f 1 v(x)=-243 \sin x=0$
$f v(x)=-729 \cos x=-729$
$f(x)=1-3+81-729++$
c) $f(x)=x$

Since

+++
$f 1(x)==1$ at $x=0$
$f 11(x)==2$
$\mathrm{f} 111(\mathrm{x})==3$
$f 1 v(x)==4$
$f v(x)==5$
$f(x)=0+x+2+3+4+$
$f(x)=x+++++$

