Pythagorean triples

ASSIGN BUSTER

PYTHAGOREAN TRIPLES The Pythagorean Theorem is probably one of the first principles learned in a Trigonometry It is about a property of all right triangles showing a relationship between their sides given by the equation c2 $=a 2+b 2$; that is, the square of the longest side is equal to the sum of the squares of the remaining two sides (Knott 2009). Hence, given any two sides of a right triangle (triangle with a 90-degree angle) the unknown side can always be solved by algebraically manipulating the equation presented above.

A special case of such triangles is when all the three sides, a, b and c, are integers, thus generating a Pythagorean Triple (Bogomolny 2009). The most popular example of which is the 3-4-5 triangle, the triple which, according to Knott (2009), was known to the Babylonians since way back 5, 000 years and was possibly used as a basis in making true right angles in ancient building construction.

Then again, the 3-4-5 triangle is just one of the infinitely many Pythagorean Triples, and mind you, there are various ways of generating such triples. One is, given two integers n and m, where $n>m$, then sides a, b and c are define as $n 2-m 2,2 n m$ and $n 2+m 2$, respectively, following a simple proof (Bogomolny 2009):

Taking for instance the triple 8-15-17, which is generated by taking $n=4$ and $m=1$, then $a=n 2-m 2=42-12=16-1=15 ; b=2 m n=2(1)(4)=$ 8 , and; $c=n 2+m 2=42+12=16+1=17$. Another example is 7-24-25, which can be verified using $n=4$ and $m=3$. Such triples are examples of Primitive Pythagorean Triples, or those triples that are not multiples of another and are found using the n-m formula (Knott 2009). Other Pythagorean Triples can be found using a variety of methods as presented
by Bogomolny (2009) and Knott (2009), some of which are:
a) by generating multiples of Primitive Pythagorean Triples, ka, kb, kc: 2 * (3, $4,5)=6,8,10$;
b) by taking a series of multiples $1,11,111, \ldots: 3-4-5,33-44-55,333-444-$ 555, ...;
c) by Two-fractions method—choose any two fractions whose product is 2, add 2 to each fraction, then cross multiply, getting the two shorter sides of the triple: $4 / 2,2 / 2 \rightarrow 8 / 2,6 / 2 \rightarrow 16,12 \rightarrow 162+122=202$, and;
d) by taking $(m+1)$ for n, with m as powers of 10 , hence simplifying the triples into $2 m+1,2 m(m+1), 2 m 2+2 m+1: 2(10)+1=21,2(10)(10+1)=$ $220,2(10) 2+2(10)+1=221$.

To sum it up, there are infinitely many Pythagorean Triples existing. But one thing is for sure, a variety of techniques are available that will serve useful in generating patterns among such triples. Hence, if you cannot list them all, be familiar of their patterns at least.

References:
Bogomolny, A. (2009). Pythagorean Triples. Retrieved November 20, 2009, from Interactive Mathematics Miscellany and Puzzles Web site: http://www. cut-the-knot. org/pythagoras/pythTriple. shtml Knott, R. (2009). Pythagorean Triangles and Triples. Retrieved November 20, 2009, from The University of Surrey, Mathematics Web site: http://www. maths. surrey. ac. uk/hosted-sites/R. Knott/Pythag/pythag. html

