
Analysis of algorithms

https://assignbuster.com/analysis-of-algorithms/
https://assignbuster.com/

Analysis of algorithms – Paper Example Page 2

In all cases explain clearly and as succinctly as possible.

Problem 1

Answer: n T (n) = 2T (n) + log n 2 2 n = 4T (n) + logn n + log n 4 2 2 2 n

= 4T (n) + log nn−1 + log n 4 2 2 = ... ∑log2 n 1 = nT (1) + n i= 1 i ∑n

Since i= 1 1 → ln n, T (n) ∈ Θ(n log log n) i

Problem 2

Answer: The general idea is to use the technique similar to quicksort, by

doing partition on both lids and cups.

First, we pick a cup randomly and use it to partition the lids into two subsets:

those lids smaller than the size of that cup, and those larger than the size of

the cup. We can also find the corresponding lid for that chosen cup. Second,

we use that lid to partition the cups and divide them into two sets. We keep

on repeating this procedure on each subset of cups/lids until all the cups/lids

are paired. The overall time complexity is O(n log n) (Worst case: O(n2)).

Problem 3

Answer: In this problem, we are more interested in finding the median

instead of the minimum/maximum element. The ⌊ n ⌋th element in a

min/max heap is not the median. 2 In this case, we should develop a new

type of heap to adapt to this problem. Problem 3 2 The solution is to use two

heaps: a min-heap and a max heap. Suppose the total number of elements is

n, we set the restriction that the max heap should contain ⌊ n ⌋ 2 elements.

Correspondingly, the min-heap contains n - ⌊ n ⌋ elements. 2 When we insert

an element, we always insert it into the max heap.

https://assignbuster.com/analysis-of-algorithms/

Analysis of algorithms – Paper Example Page 3

If the number of elements in the max heap exceeds ⌊ n ⌋, we remove the

maximum element in the 2 max heap (the root) and insert it into the

minimum heap. During this procedure, we need to do heapify to maintain the

heap structure for both heaps. Under this setting, it is easy to see that all the

elements in the max heap are less than those in the min-heap, and the two

elements at the root of both heaps represent the ⌊ n ⌋th 2 and (⌊ n ⌋ + 1)th

element.

2 Suppose the median is de? ned to be the ⌊ n ⌋th element overall n

elements.

When 2 we delete the median, we just delete the root of the max heap, and

the following two cases might occur: (1) If the max heap contains ⌊ n ⌋ 1 -

elements, then we do delete-max to the max 2 heaps. (2) If the max heap

contains ⌊ n - 1 ⌋ - 1 elements, we take out the root of the min 2 heap and

set it to be the root in the max heap (because it is larger than all the

elements in the max heap), then we do delete-min to the min-heap. It is

straightforward to see that the time complexity for both insert and delete-

median is O(log n).

https://assignbuster.com/analysis-of-algorithms/

	Analysis of algorithms

