Causes of students sleeping in class hours

Profession, Student

ASSIGN BUSTER

It is a bad habit Of each every one Of us, mostly we experienced it because Of many reasons, andsocial mediais the major reason of our laziness. Social media is not always positive. Students usually multi-task while studying, they check their social media sites while on the process of studying. Their ability to concentrate on the task at hand is significantly reduced by the distractions in posting comments, tweeting and online gaming. Later on they will be totally distracted by their social media activities thus forget about the subjects that hey should focus on, in the first place.

This is one very common problem faced by the students not only in this present era but most likely since the formaleducationwas being taken and introduced. The popularity of social media can caught the attention of many students like us. There's no doubt that students are energetic and actively engaged in online communities such as: posting comments, tweeting and online gaming. A. Statement of the Problem Laziness occurred because our attention is caught by the social media and we're not aware that our interest in our studies is now losing. In this kind of search, we prepare some questions about this.

What are the contributions of social media to the laziness of the students? Why is it that the social media is the number one cause of the laziness of the students? What can we do to overcome this bad habit? B. Hypothesis In this research, we give some answer on the following questions. This answer would be the possible answer of the students about this. For students, who always feel lazy, bored, not interested and sleepy during class hours. It is because they prefer using computers in useless things. Instead of using it on doing your homework, lessons, and projects.

Some students feel lazy during class hours for the reason that they're lack of sleep and rest. Some of them are still using computers, browsing nonsense things or playing online games even if it is late at night. We can avoid this laziness by having amotivationor a goal. By setting our minds that we should use computers in a good way. Don't use computers too much in doing our school works, we can still browse some information from a reference book. C. Significance of the Study We all know that we can avoid this kind of activity. This research can change their bad habit. This can help them to stay focus on their studies.

This research provides awareness to those students who are always lazy when it comes to study but so energetic when it comes tosocial networkingsites. This can also help them to know and realize that using computers for your school works has a bigger difference than using computers to any useless things. Eke, online gaming and always using social networking sites while studying, that's why they can't stay focus on their studies. D. Scope and Delimitation's of the Study Our research is focused on the contributions of social media activities to the jazziness of the students.

Through this research we will have more knowledge and deep understanding about its contribution. The selected students of San Guillemot Academy from grade seven to fourth year are our respondents. Thirty (30) students from grade seven, thirty (30) students from grade eight, thirty (30) students from Third year and ten (10) students from fourth year. For a total of 100 respondents. Bored, not interested in class, not interested to the subject and
sleepy because you're lazy and all you want to do is to use computer time to time.

Chapter II Theoretical and Conceptual Framework Review of Related Literature Cutting back on sleep for school work is counterproductive Students who Stay up late to cram for a test or finish a project have lower comprehension and worse performance in the classroom as a result, research shows. By Mary Mclean August 22, 2012 Los Angels Times The old aphorism that " you snooze, you lose" doesn't apply to students who stay up late to cram for a test or finish a class project. New research shows that sacrificing sleep for school work is a bad trade.

Researchers from Class Jane and Terry Semen Institute for Neuroscience and Human Behavior enlisted students from three Los Angels high schools to help them figure out whetheracademicperformance suffered the day after a late night of studying. It turned out their hunch was correct: Lost sleep resulted in less comprehension during class and worse performance on tests, according to their report, published online Tuesday in the journalChild Development. " Sacrificing sleep for studying seems to be counterproductive," said Andrew J.

Fulfilling, a developmental psychologist at UCLA and the stud's senior author. The researchers gave 535 teenagers checklists to keep track of their sleep and duty time for three 14-day periods when they were in ninth, 10th and 12th grades. The UCLA team found that regardless Of how much time a high schooled normally spends on homework each day, a student who gives up sleep for extra study time will have trouble the next day understanding
material in class and be more likely to struggle with an assignment or test the opposite of the student's intent.

The researchers didn't quantify the increased risk for academic problems following a longer-than-usual study session, but they said the number of problems was " surprisingly greater. " The allegations held up no matter how academically ambitious the student was, as measured by the amount of time spent studying on a typical day, and it became stronger as students progressed through high school. The results rang true to Aka Daniels, a college-bound senior at the Los Angels Center for Enriched Studies, a MidCity magnet school. On occasions when she's stayed up late to study, she's had more trouble absorbing material in class, she said. I'd have to retrace myself at night," she said. The finding " makes a lot of sense," said Mona elSheikh, a professor of human velveteen andfamilystudies at Auburn University whose research includes sleep. Several new studies are showing that the quantity and the quality of sleep are important for remembering new information and consolidating learning, she said. Students who get too little sleep don't have enough time to process what they study, she added; even just one night of sleep deprivation can have a negative effect.

Parents should do what they can to make sure their children have sufficient and consistent sleep, she said. Fulfilling said he could not disclose which schools took part in the research. The dents varied in ethnic and economic backgrounds, as well as in their level Of academic achievement. Their checklists revealed that study time did not change over the course of high
school -? the average was just over an hour per day -? but sleep time decreased by an average of 41.4 minutes. Ready, willing, and able?

Sleep hygiene education, motivational interviewing and cognitive behavior therapy for insomnia in an Australian high school setting Journal Article By Mineral Cain Publication: Education andHealthDate: 2012 Cognitive behavior therapy for insomnia is well-regarded as an effective retirement for insomnia in adults. Previous studies also suggest that CB-I can be successfully applied to adolescents experiencing insomnia and other sleep problems, which most commonly involve delayed sleep timing. The recommended treatment involves a combined program of morning bright light therapy, stimulus control therapy, and education about sleep hygiene.

Improving sleep pattern regularity by getting up earlier on weekends (I. E. , at a time closer to the weekday wake-up time) can play a particularly important role in increasing total sleep time during the week and decreasing daytime leafiness. Recent research suggests that the school classroom may be a promising arena for the dissemination of sleep interventions for adolescents. However, many of the earlier studies in this area have been plagued by problems such as inappropriate outcome measures, small sample size, lack of control group, and lack of follow-up data.

Reporting has also been poor, with a number of studies presented only in abstract form. Results have been mixed: some studies showed improved knowledge about sleep, despite having no data about actual changes in sleep habits or behaviors; another duty measured sleep habits but found no change from pre- to post- treatment. Finally, some studies found changes in
sleep habits from pre- to post-treatment, although these results must be interpreted with caution due to the previously mentioned problems of small sample size, lack of control group, and lack of follow-up data.

A series oft studies conducted by researchers at Flinders University in Adelaide, Australia, attempted to overcome the limitations of previous research by conducting randomized controlled trials evaluating school-based intervention programs aimed at improving the sleep of adolescents. Full details of these studies can be found in earlier publications; however, an outline of the main findings are presented here, along with recommendations for others planning school-based interventions for adolescent sleep problems.

Impact of Delaying School Start Time on Adolescent Sleep, Mood, and Behavior Journal Article By Judith Owens Publication: Arch Pediatrics's Med Date: 2010 Objective: To examine the impact of a 30-minute delay in school start time on adolescents' sleep, mood, and behavior. Design: Participants completed the online retrospective Sleep Habits Survey before and after a change in school tart time. Setting: An independent high school in Rhode Island. Participants: Students $(\mathrm{n}=201)$ in grades 9 through 12. Intervention: Institution of a delay in school start time from 8 to 8: 30 AM.

Main Outcome Measures: Sleep patterns and behavior, daytime sleepiness, mood, data from the Health Center, and absences/tardiest. Results: After the start time delay, mean school night sleep duration increased by 45 minutes, and average bedtime advanced by 18 minutes (95\% confidence interval, 729 minutes [24th=3.36; PC the percentage of students getting less than 7
hours of sleep decreased by 79. 4\%, ND those reporting at least 8 hours of sleep increased from 16. 4% to 54.7%. Students reported significantly more satisfaction with sleep and experienced improved motivation.

Daytime sleepiness, fatigue, and depressed mood were all reduced. Most health-related variables, including Health Center visits for fatigue-related complaints, and class attendance also improved. Conclusions: A modest delay in school start time was associated with significant improvements in measures of adolescent alertness, mood, and health. The results of this study support the potential benefits of adjusting school schedules to adolescents' sleep needs, circadian rhythm, and developmental stage. Middle School Start Times: The Importance of a Good Night's Sleep for Young Adolescents Journal Article By Amy R.

Wolfs Publication: Behavioral Sleep Medicine Date: 2007 With the onset of adolescence, teenagers require 9.2 hrs of sleep and experience a delay in the timing of sleep. In the " real world" with early school start times, however, they report less sleep, striking differences between their schoolweekend sleep schedules, and significant daytime sleepiness. Prior studies demonstrated that high coolers with later school starts do not rather delay bedtime but obtain more sleep due to later wake times. This study examined sleep-wake patterns of young adolescents attending urban, public middle schools with early (7: 15 a. .) versus late (8: $37 \mathrm{a} . \mathrm{M}$.) start times. Students ($\mathrm{N}=205$) were assessed at 2 time periods. Students at the late- starting school reported waking up over 1 hrs later on school mornings and obtaining 50 min more sleep each night, less sleepiness, and fewer tardiest than
students at the early school. All students reported similar school-night bedtime, sleep hygiene practices, and weekend sleep schedules. Related Studies Sleep Complaints Affecting School Performance at Different Educational Levels By James F. Page and Carol F.

Swastikas Published online 2010 November 16. Prepossessed online 2010 July 21 Abstract The clear association between reports of sleep disturbance and poor school performance has been documented for sleepy adolescents. This study extends that research to students outside the adolescent age grouping in an associated school setting (98 middle school students, 67high school students, and 64 college students). Reported restless legs and periodic limb movements are significantly associated with lower Spa's in junior high students.

Consistent with previous studies, daytime sleepiness was the sleep variable most likely to negatively affects high school students. Sleep onset and maintenance insomnia were the reported sleep variables significantly correlated with poorer school performance in college students. This study indicates that different sleep disorder variables negatively affect performance at different age and educational levels. Keyset; rods: adolescent, college, sleep, restless legs, school, insomnia, GAP Introduction A growing body of work documents the association between disordered sleep and school performance.

Students who report insomnia, inadequate sleep, daytime sleepiness, irregular sleep patterns and/or poor sleep quality do not perform as well in school as others (Blue et al. , 1990; Link and Nicolai- Israel, 1995; Hoffman
and Strength, 1 997; Wolfs and Sarandon, 1 998, 2003; Shin et al. , 2003; Mailman, 2005). Children enrolled in remedial school programs report significantly more sleep problems (Blunder and Chervil, 2008). Reported abnormalities in sleep including sleep latency [SSL]> mini and more than one arousal per night at least two nights/week have shown an association with an increase in schoolfailurerates (Kahn et I. 1989). A large study in the Spanish secondary school system (N= 11 55, mean age 14) found a significant correlation between class failure and sleep complaints, and morning sleepiness (Solaced et al., 2005). Better school performance is associated with more time in bed, better sleep quality, fewer nighttimes arousal, less napping and less difference between weekday and weekend sleep times (Link and Nicolai-lesser, 1 995; Hoffman and Strength, 1997; Wolfs and Sarandon, 1998).

The association between sleep complaints and poor school performance is supported by in-lab experimental studies that demonstrate negative effects for sleep deprivation, sleep restriction, and sleepiness on laboratory measures of motor skill, memory, attention and problem solving in children and adolescents (Shades et al. , 2002; Teaser et al. , 2002; Sarandon et al. , 2004). Experimental restriction Of sleep in students (ages 6-12) has been shown to lead to academic difficulty in the classroom as well as increased severity of school related attention problems (Fallen et al. 2005). There are suggestions in the literature that sleep variables affecting school performance differ based on age and educational level. In seven year olds, short sleep duration is associated with higher emotional liability (Nixon et al. , 2008). Adolescent aged delayed sleep phase develops at the onset of
puberty with the associated daytime sleepiness affecting school performance in the high school aged population (Wolfs and Sarandon, 2003; Mailman, 2005). In a large study of Canadian high school students ($\mathrm{N}=3,235$, mean age 16.) twenty-three percent of students felt that their grades had dropped in high school because of daytime sleepiness (Gibson et al. , 2006). A similar study in Korean high school students $\mathrm{N}=3,871$, mean age 16. 8) reported excessive daytime sleepiness (DES) to be present in 15. 9\% of students. DES was significantly associated with perceived sleep insufficiency, two or more insomnia symptoms and low school performance (Joy et al. , 2005). The proportion of students reporting insomnia appears to increase with increasing age and higher educational level.

Among Japanese adolescents, both difficulty initiating sleep and reported insomnia gradually increase from 7th to 12th grade (Kanata et al. , 2006). Up to 30% of college students report chronic Severe sleep difficulties including both daytime sleepiness and insomnia with 11% meeting criteria for delayed sleep phase syndrome (DADS) (Brown et al. , 2001, 2006). Sleep disturbances are likely to continue to affect school performance in adults. Cognitive function test scores have been noted to fall in both medical students and residents after sleep deprivation (Wallach et al. 2003). Disordered sleep has also been noted to effect behaviors other than school performance. For example, daytime sleepiness was shown to negatively affect student participation in extracurricular activity (Gibson et al. , 2006). Studies have documented the effect of disordered sleep on the behavioral and emotional performance of elementary' school children (Meandered et al. , 2006; El-Sheikh et al. , 2007). Children with fragmented sleep score
lower on tests of neurologically functioning and have increased parentreported levels of behavior problems (Shades et al. 2002). In adolescent boys reported tiredness and sleepiness associated with lower perceived academic performance is also associated with negative mood states, problematic alcohol use, perceived mistreatment or abuse, antisocial behavior, intention to use or current use of illegal drugs, ND feelings of isolation (O'brien and Mindful, 2005; Anyone et al. , 2007). Treatment protocols proposed and utilized in the treatment of sleep disturbance in students A variety of treatment protocols have been proposed for general application in student populations.

The finding that early high school start times are associated with student reports of less sleep and increased sleepiness has led to proposals for changes in school start times (Dexter et al. , 2003; Joy et al. , 2005). In some states and communities school Start times have been changed based on legislation. It is currently unclear hither this approach leads to an improvement in school performance (Liaison et al. , 2002). In elementary students treatment suggestions for sleep complaints include attempts to resolve the marital conflicts (El-Sheikh et al. , 2007).

Emphasis on the behavioral basis of daytime sleepiness in high school students has led to the development and application of co-educational programs emphasizing sleep hygiene (Joy et al. , 2005; Gibson et al. , 2006). Melatonin used as a pharmacological treatment for adolescents aged 10-? 1 areas in the treatment of DADS has been shown to exult in fewer of these students reporting school difficulties (Ginsberg et al. , 2006). Some studies
have suggested, based on data derived from high school studies, that coeducational treatment approaches and delayed class start times be utilized in the treatment of college students (Brown et al. 2006; Gibson et al. , 2006). In the effort to improve school performance at all educational levels, there appears to be a tendency to apply one-size-fits-all programs for the treatment of sleep disturbance based on data from high school studies (Brown et al., 2006). This study presents data evaluating the association between questionnaire-reported sleep disturbances and school performance in three separate groups of students extending from grade 6 through college (age range 10-? 54).

It is the authors' hypothesis that the sleep variables affecting school performance in elementary school and junior high differ from those affecting school performance in high school, and those affecting college students. If this hypothesis is correct, it becomes increasingly important that future research studies and treatment protocols should clarify the age and educational level association of sleep disorder variables with school performance. Materials and Methods Three samples of students were analyzed for this study: middle school (grades 6-8), high school (grades 9-11) and college students.

The first samples were assessed in thescienceand heath classes at associated middle and high schools in Pueblo, Colorado near the end of the 2005 school year. The college sample was assessed inpsychology, nursingand medical classes at the local community colleges as part of an invited presentation on " Sleep in Young Adults" in 2007. Although all three
studies used the same questionnaire instrument, because of differences in the settings, statistical imprisons were made within, but not across the three educational levels.

An RIB approved, 18-question frequency-based pediatric sleep disturbance questionnaire, based on validated and indexed questions (Chervil et al., 2000, 2003; Page et al. , 2007), was used for all three samples. The questionnaire consisted of five ordinal response categories: I-? never; $2=$ rarely (once a month); $3=$ sometimes (once a week); 4= occasionally (twice a week); $5=$ always (every night). In order to simplify interpretation of the data and reduce categories with small numbers of responses, we aggregated the sleep ATA to compare response categories 3-5 to categories 1 and 2 .

This differentiated those who reported having the sleep problem at least once a week from those who had it less often. Assessment of school performance was based on self reported GAP (Range 2. 0-4. 0), which is a common method for defining academic performance in sleep research (Blue et al. , 1990; Hoffman and Strength, 1997; Wolfs and Sarandon, 1 998; Mailman, 2005). Although questionnaires were distributed to 238 middle and high school students, only 165 (69. \%) reported their GAP While only the students porting GAP could be analyzed for this study, chi-square analyses revealed that none of the sleep variables differed significantly between those who provided GAP data and those who did not. In addition, a proportion of post- secondary school students were enrolled in either nursing or medical training programs that did not rate performance based on GAP and therefore could not be included. This study included 98 junior high students (Grades 6-
8), 67 high school students (grades 9-11) and 64 college students (mean age 27., range 17-? 59). GAP was not normally distributed and therefore was split at the Edwina to form two groups within each educational level: Low GAP and High GAP. Within each of the three educational levels, chi-square analyses, using Fisher-exact one-sided tests, were run to compare each of the sleep disturbance variables by GAP (low or high). Results Table 1 displays descriptive information for demographic and sleep variables for the three groups. Notably, there were more Hipic students in the two younger groups and more African American and white students in the college group.

There were also substantially more males in the college group than the two younger groups. However, within each educational group, there were o significant differences in age, ethnicity or gender by GAP. For all three groups, the most common sleep associated problem was feeling unrepressed/tired in the morning, followed by having trouble waking up in the morning. The least common behaviors were trouble with breathing when sleeping and taking sleep medication. Table 1 Demographic and sleep variables for all three groups.

