
Primal dual column
generation method
english language
essay

Linguistics, English

https://assignbuster.com/essay-subjects/linguistics/english/
https://assignbuster.com/essay-subjects/linguistics/
https://assignbuster.com/primal-dual-column-generation-method-english-language-essay/
https://assignbuster.com/primal-dual-column-generation-method-english-language-essay/
https://assignbuster.com/primal-dual-column-generation-method-english-language-essay/
https://assignbuster.com/

 Primal dual column generation method eng... – Paper Example Page 2

label{ch: pdcgm}In this chapter we present theoretical and computational

developments of the primal-dual column generation method (PDCGM).

Firstly, we describe the method and its main components and provide

evidence of its convergence. In the second part, we present the results of

computational tests aimed to compare the performance of the primal-dual

column generation method against the standard column generation (SCG)

and the analytic centre cutting plane methods (ACCPM). All the descriptions

and results in this chapter closely follow the developments presented in

cite{GonGonMun2013}. As discussed briefly in Chapter ef{ch: colgen}, the

standard column generation and the analytic centre approaches are

extremal strategies, as they are based on optimal solutions but for different

objective functions. With the former strategy one obtains an optimal vertex

solution at every iteration while with the latter the solution of the barrier

problem associated with the localization set in the dual space. In fact, the

analytic centre of a feasible set corresponds to the optimal solution of a

modified dual problem associated with the RMP. From this point of view, the

idea of the primal-dual column generation technique is somewhere in the

middle between these two approaches. It relies on solutions that are close-

to-optimality (suboptimal), but at the same time not far from the central

trajectory in the dual feasible set (well-centred). The contribution of using

well-centred suboptimal solutions is twofold. First, fewer inner iterations are

usually needed to solve each RMP since we do not require a high accuracy in

an initial stage. Hence, the running times per outer iteration is usually

reduced at this stage. To understand this point, let us consider Figure ef{fig:

strategies} which illustrates the possible dual solutions found by these three

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 3

methods and provided to the oracle.egin{figure}

[H]centeringincludegraphics[keepaspectratio= true, clip= true, viewport =

650 700 2700 1800, scale = 0. 14] {figures/strategies}caption{Schematic

illustration of solutions provided by the SCG ({large $circ$}), the PDCGM

({large $diamond$}) and the ACCPM ({scriptsize $square$}) strategies in

the dual space}label{fig: strategies}end{figure}The area represented by

horizontal lines is the localization set and the dashed line represents the best

dual bound found so far. The circle denotes the solution obtained by the

standard column generation method based on the simplex method which is

at the vertex of the feasible region. On the other hand, the square

represents the solution obtained by the analytic centre cutting plane

method. The central trajectory (in a very particular space) is denoted by the

dashed-dotted curved line while the diamond figure illustrates the solution

obtained by the primal-dual column generation method. Note that the

solution obtained by the PDCGM becomes closer to the optimal facet of the

polytope in the dual space as the column generation method approaches the

termination. This is explained in the next section. Second, a more stable

column generation strategy is likely to be obtained since during the first

iterations and when the RMP has not yet gathered enough information, the

dual variables are not expected to change dramatically from one iteration to

another due to the use of well-centred solutions (close to the central path).

The result we expect from this is that a smaller number of outer iterations as

well as less total CPU time will be usually required to solve the MP. This

strategy known as the primal-dual column generation method was proposed

in cite{GonSar96} and is based on suboptimal solutions of the RMPs. A

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 4

primal-dual interior point method is used to solve the RMPs, which makes

possible obtaining primal-dual feasible solutions which are well-centred in

the feasible set, but have a non-zero distance to optimality. Note that this is

not achievable if one would like to use a simplex-type method since in

general the distance to optimality is not known in advance.

section{Theoretical developments}Following the notation of Chapter ef{ch:

colgen}, we consider that a given RMP is represented by

(ef{restrictedmasterproblem}), with optimal primal-dual solution $

(overline{lambda}, overline{u})$. Similarly to the standard column

generation approach, the primal-dual column generation starts with an initial

RMP with enough columns to avoid an unbounded solution. However, at a

given outer iteration, instead of solving the problem to optimality, a

suboptimal feasible solution $(ilde{lambda}, ilde{u})$ of the current RMP is

obtained. This suboptimal solution is defined as follows.egin{definition}

label{def: suboptimal: sol}A primal-dual feasible solution $(ilde{lambda},

ilde{u})$ of the RMP is called suboptimal solution, or $varepsilon$-optimal

solution, if it satisfiesegin{equation}0 leq (c^{T} ilde{lambda} - b^{T}

ilde{u}) leq varepsilon (1 + | c^{T} ilde{lambda} |),

onumberend{equation}for some tolerance $varepsilon > 0$.

end{definition}We denote by $ilde{z}_{RMP} = c^{T} ilde{lambda}$ the

objective value corresponding to the suboptimal solution $(ilde{lambda},

ilde{u})$. Since $c^{T} ilde{lambda} geq c^{T} overline{lambda} =

z_{RMP}$, we have the following inequalities $z_{MP} leq z_{RMP} leq

ilde{z}_{RMP}$ and therefore, $ilde{z}_{RMP}$ is a valid upper bound of

the optimal value of the MP. Once the suboptimal solution of the RMP is

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 5

obtained, the oracle is called with the dual solution $ilde{u}$ as a query

point. Then, it should return either a value $z_{SP}(ilde{u}) = 0$, if no

columns could be generated using the proposed query point, or a value

$z_{SP}(ilde{u}) < 0$, together with one or more columns to be added to

the RMP. Observe that in the second case at least one column can always be

generated, as $ilde{u}$ is dual feasible for the RMP and, hence, all columns

already generated must have a non-negative reduced cost. Having defined

the concept of suboptimal solutions, we can now show that the bounds

provided by using such solutions, are valid in a column generation context.

To do so, let us first consider the value $kappa > 0$ defined as in (ef{eq:

kappa: upper}). The value of $kappa$ depends on the application; however,

it is typically a known parameter. According to the following lemma, a lower

bound of the optimal value of the MP can still be obtained. It is the classical

Lagrangian bound (see extit{e. g.} cite{BriLemMeuMicPerVan08,

benamor2009}), but derived from a column generation scheme and using a

subpotimal solution.egin{lemma}label{lemma: subopt: lb}Let

$ilde{z}_{SP}:= z_{SP}(ilde{u})$ be the value of the oracle corresponding

to the suboptimal solution $(ilde{lambda}, ilde{u})$. Then, $kappa

ilde{z}_{SP} + b^{T} ilde{u} leq z^{star}$. end{lemma}egin{proof}Let

$lambda^{star}$ be an optimal primal solution of the MP. By using (ef{eq:

mp: 01}) and $ilde{z}_{SP} leq 0$, we have thategin{eqnarray}c^{T}

lambda^{star} - b^{T} ilde{u} &=& sum_{j in N} c_{j} lambda_{j}^{star}

- sum_{j in N} lambda_{j}^{star} a_{j}^{T} ilde{u} onumber &=& sum_{j

in N} lambda_{j}^{star} (c_{j} - a_{j}^{T} ilde{u}) onumber ≥q& sum_{j

in N} lambda_{j}^{star} ilde{z}_{SP} onumber ≥q& kappa ilde{z}_{SP}.

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 6

onumberend{eqnarray}Therefore, we have that $z^{star} = c^{T}

lambda^{star} geq kappa ilde{z}_{SP} + b^{T} ilde{u}$. end{proof}The

solution $(ilde{lambda}, ilde{u})$ should also be well-centred in the primal-

dual feasible set, in order to provide a more stable dual information to the

oracle. We say a point $(lambda, u)$ is well-centred if it

satisfiesegin{equation}gamma mu leq (c_{j} - u^{T} a_{j}) lambda_j leq

(1/gamma) mu, forall j in overline{N}, label{eq: well-centred:

sol}end{equation}for some $gamma in (0. 1, 1]$, where $mu = (1/|

overline{N}|) (c^{T} - u^{T} A) lambda$. This resembles our definition of

symmetric neighbourhood in eqref{symmetric: neighbourhood} for

particular values of $gamma$, noting that $s_j = c_{j} - u^{T} a_{j}$ and

$lambda_j = x_j$, for every $j in overline{N}$. By imposing (ef{eq: well-

centred: sol}), we guarantee that the point is not too close to the boundary

of the primal-dual feasible set and, hence, the oscillation of the dual

solutions will be relatively small. Notice that (ef{eq: well-centred: sol}) is a

natural way of stabilizing the dual solutions, if a primal-dual interior point

method is used to solve the RMP cite{Wri97, Gondzio2011}. One important

observation is that the tolerance $varepsilon$ which controls the distance of

$(ilde{lambda}, ilde{u})$ to optimality can be ``large'' at the beginning of

the column generation process, as a very rough approximation of the MP is

known at this time. We exploit this fact and during the first iterations, the

PDCGM aims to find interesting columns as quickly as possible by solving the

RMP to a predefined tolerance. However, solving the RMPs to a loose

tolerance is likely to hamper the convergence to the optimal MP so at some

point along the process this tolerance needs to be tightened to ensure that

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 7

the method converges. The best way we have to identify when the column

generation is converging to an optimal solution of the MP is by using the

relative gap in the outer iterations, which is given byegin{equation}gap:=

frac{c^{T} ilde{lambda} - (kappa ilde{z}_{SP} + b^{T} ilde{u})}{1 + |

c^{T} ilde{lambda}|}, end{equation}where $ilde{z}_{SP}:= z_{SP}

(ilde{u})$, as defined in Lemma ef{lemma: subopt: lb}. Then, at the end of

every outer iteration, we recompute the relative gap, and the tolerance

$varepsilon$ used in the PDCGM is updated

asegin{equation}varepsilon^k:= min { varepsilon_{max}, gap^{k-1} / D },

label{eq: suboptimal: tolerance: gap}end{equation}where $D> 1$ is the

extit{degree of optimality} that relates the tolerance $varepsilon^k$ to the

relative gap at iteration $k-1$. In our theoretical developments and

computational experiments, we consider D as a fixed parameter. Also, a

threshold $varepsilon_{max}$ is used so that the suboptimal solution is not

too far away from the optimum. Note that the update of the tolerance after

reaching the break point is done gradually and we do not require the method

to solve every RMP to optimality apart from the last iterations. By using this

dynamically adjusted tolerance, we expect to reduce the problems arising

when using the standard column generation, namely the heading-in and the

tailing-off effects.egin{figure}[h]centeringincludegraphics[keepaspectratio=

true, clip= true, viewport = 540 670 2820 1670, scale = 0. 175]

{figures/deg_opt}caption{Results with the PDCGM for the VRPTW - Role of

the dynamically adjusted tolerance}label{fig: deg_opt}end{figure}In Figure

ef{fig: deg_opt}, we demonstrate the behaviour of the PDCGM when solving

a random instance of the vehicle routing problem with time windows. The

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 8

figure illustrates the changes in the relative duality gap over the iterations.

Note that a relative gap greater than 1 occurs when $kappa ilde{z}_{SP}

+ b^{T} ilde{u} < -1$. The horizontal dashed line denotes the break point

when the method switches from using a loose tolerance $varepsilon_{max}$

to a tighter tolerance, namely gap^{k-1}/D. During all the process, we

pass to subproblems the well-centred solutions provided by the use of the

primal-dual interior point method and considering the symmetric

neighbourhood.%It is important to emphasize that unlike the standard

approach, $ilde{z}_{SP} = 0$ does not suffice to terminate the column

generation process.%Indeed $ilde{lambda}$ is feasible for the MP while

$ilde{u}$ is not and therefore there may still be a difference between

$c^{T} ilde{lambda}$ and $b^{T} ilde{u}$. Lemma ef{lemma: zsp: 0}

below shows that the gap is still reduced in this case, and the progress of the

algorithm is guaranteed. It is important to emphasize that unlike the

standard approach, $ilde{z}_{SP} = 0$ does not suffice to terminate the

column generation process since there may still be a difference between

$c^{T} ilde{lambda}$ and $b^{T} ilde{u}$. Lemma ef{lemma: zsp: 0}

below shows that the gap is still reduced in this case, and the progress of the

algorithm is guaranteed.egin{lemma}label{lemma: zsp: 0}Let $

(ilde{lambda}, ilde{u})$ be the suboptimal solution of the RMP, found at

iteration k with tolerance $varepsilon^{k} > 0$. If $ilde{z}_{SP} = 0$,

then the new relative gap is strictly smaller than the previous one, extit{i.

e.}, $mbox{gap}^{k} < mbox{gap}^{k-1}$. end{lemma}egin{proof}We

have that $ilde{z}_{RMP} = c^{T} ilde{lambda}$ is an upper bound of the

optimal solution of the MP. Also, from Lemma ef{lemma: subopt: lb} we

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 9

obtain the lower bound $b^{T} ilde{u}$, since $ilde{z}_{SP} = 0$. Hence,

the gap in the current iteration is given by$$gap^{k} = frac{c^{T}

ilde{lambda} - b^{T} ilde{u}}{1 + | c^{T} ilde{lambda} |}.$$Notice that

from Definition ef{def: suboptimal: sol}, the right-hand side of this equality

is less or equal than $varepsilon^{k}$, the tolerance used to obtain $

(ilde{lambda}, ilde{u})$. Hence, $gap^{k} leq varepsilon^{k}$. We have

two possible values for $varepsilon^{k}$. If $varepsilon^{k} =

varepsilon_{max}$, then by (ef{eq: suboptimal: tolerance: gap}) $gap^{k-

1} geq D varepsilon^{k} > varepsilon^{k} $. Otherwise, $varepsilon^{k}

= gap^{k-1} / D$ and, again, $gap^{k-1} > varepsilon^{k} $ which

completes the proof. end{proof}Algorithm ef{alg: pdcgm} summarizes the

above discussion. Notice that the primal-dual column generation method has

a simple algorithmic description, similar to the standard approach (compare

with Algorithm ef{alg: col_gen}). Thus, it can be implemented in the same

level of difficulty if a primal-dual interior point solver is readily available.

Notice that $kappa$ is known in advance and problem dependent. Also, the

upper bound of the RMP, $ilde{z}_{RMP}$, may slightly increase from one

iteration to another due to the use of suboptimal solutions and, hence, we

store the best value found so far in $mbox{UB}$ (Step ef{ub: store} in

Algorithm ef{alg: pdcgm}).egin{algorithm}caption{The Primal-Dual Column

Generation Method}label{alg: pdcgm}extbf{Set:} $mbox{LB}=-infty$,

$mbox{UB}= infty$, $gap = infty$, $varepsilon = 0. 5$;egin{algorithmic}

[1]WHILE{$(gap geq delta)$}STATE{find a well-centred $varepsilon$-

optimal solution $(ilde{lambda}, ilde{u})$ of the RMP;}STATE{$mbox{UB}

= min{mbox{UB}, ilde{z}_{RMP}}$;} label{ub: store}STATE{call the oracle

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 10

with the query point $ilde{u}$ and set $ilde{z}_{SP}:= z_{SP}(ilde{u})

$;}STATE{$mbox{LB} = max{mbox{LB}, kappa ilde{z}_{SP} + b^{T}

ilde{u}}$;}STATE{$gap = (mbox{UB} - mbox{LB}) / (1 + | mbox{UB} |)

$;}STATE{$varepsilon = min { varepsilon_{max}, gap / D }$;}STATE{if $

(ilde{z}_{SP} < 0)$ then add the new columns to the

RMP;}ENDWHILEend{algorithmic}end{algorithm}Since the PDCGM relies on

suboptimal solutions of each RMP, it is important to provide guarantees that

it is a valid column generation procedure, extit{i. e.}, a finite iterative

process that delivers an optimal solution of the MP. Even though the

optimality tolerance $varepsilon$ decreases geometrically in the algorithm,

there is a special case in which the subproblem value is zero, which would

cause the method to stall. Fortunately, by using Lemma ef{lemma: zsp: 0}

we can guarantee the method still converges to the optimal solution of the

MP. The proof of convergence is given in Theorem ef{theorem:

finite}.egin{theorem} label{theorem: finite}Let z^{star} be the optimal

value of the MP. Given $delta > 0$, the primal-dual column generation

method converges in a finite number of steps to a primal feasible solution

$hat{lambda}$ of the MP with objective value $ilde{z}$ that

satisfiesegin{equation}(ilde{z} - z^{star}) < delta (1 + | ilde{z}|). label{eq:

theorem: gap}end{equation}end{theorem}egin{proof}Consider an

arbitrary iteration k of the primal-dual column generation method, with

corresponding suboptimal solution $(ilde{lambda}, ilde{u})$. After calling

the oracle, two situations may occur:egin{enumerate}item $ilde{z}_{SP} <

0$ and new columns have been generated. These columns correspond to

dual constraints of the MP that are violated by the dual point $ilde{u}$.

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 11

Since the columns are added to the RMP, the corresponding dual constraints

will not be violated in the next iterations. Therefore, it guarantees the

progress of the algorithm. Also, this case can only happen a finite number of

times, as there are a finite number of columns in the MP. item $ilde{z}_{SP}

= 0$ and no columns have been generated. If additionally we have

$varepsilon^{k} < delta$, then from Lemma ef{lemma: zsp: 0} the gap in

the current iteration satisfies $gap^{k} < delta$, and the algorithm

terminates with the suboptimal solution $(ilde{lambda}, ilde{u})$.

Otherwise, we also know from Lemma ef{lemma: zsp: 0} that the gap is still

reduced, and although the RMP in the next iteration will be the same, it will

be solved to a tolerance $varepsilon^{k+1} < varepsilon^{k}$. Moreover,

the gap is reduced by a factor of $1/D$ which is less than 1 and, hence,

after a finite number of iterations we obtain a gap less than $delta$.

end{enumerate}At the end of the iteration, if the current gap satisfies

$gap^{k} < delta$, then the algorithm terminates and we have$$

frac{ilde{z}_{RMP} - (kappa ilde{z}_{SP} + b^{T} ilde{u})}{1 + |

ilde{z}_{RMP}|} < delta.$$Since $kappa ilde{z}_{SP} + b^{T} ilde{u} leq

z^{star}$, the inequality (ef{eq: theorem: gap}) is satisfied with $ilde{z} =

ilde{z}_{RMP}$. The primal solution $ilde{lambda}$ leads to a primal

feasible solution of the MP, given by $hat{lambda}_j = ilde{lambda}_j$,

$forall j in overline{N}$, and $hat{lambda}_j = 0$, otherwise. If $gap^{k}

geq delta$, a new iteration is carried out and we have one of the above

situations again. end{proof}Having presented a proof of convergence for the

PDCGM, it is important to give some remarks about its implementation. As

requested by (ef{eq: well-centred: sol}), the suboptimal solutions are well-

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 12

centred points in the primal-dual feasible set. This contributes to the

stabilization of the dual points and, hence, reduces the number of outer

iterations in general. In our implementation, each RMP is solved by the

interior point solver HOPDM cite{gondzio1995}. It keeps the iterates inside a

neighbourhood of the central path, which has the form (ef{eq: well-centred:

sol}). To achieve this, the solver makes use of multiple centrality correctors

cite{gondzio1996multiple, colombo2008}. An efficient warmstarting

technique is essential for a good performance of a column generation

technique based on a interior point method, such as the PDCGM. Throughout

the column generation process, closely-related problems are solved, as the

RMP in a given iteration differs from the RMP of the previous iteration by

merely a few columns. Hence, this similarity should be exploited in order to

reduce the computational effort of solving a sequence of problems. In our

implementation of PDCGM, we rely on the warmstarting technique available

in the solver HOPDM cite{Gon98}. The main idea of this method consists of

storing a close-to-optimality and well-centred iterate when solving a given

RMP. After a modification is carried out on the RMP, the stored point is

adjusted to create a full-dimensional initial point to start from. Warmstarting

is a key aspect of a successful column generation implementation and

therefore, in Chapter ef{ch: warmstarting} we include a complete analysis of

this feature and describe a new warmstarting strategy in this context. Notice

that a primal-dual interior point method is well-suited for the implementation

of the PDCGM. In fact, (standard) simplex-based methods cannot

straightforwardly provide suboptimal solutions which are well-centred in the

dual space. Instead, the primal and dual solutions are always on the

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 13

boundaries of their corresponding feasible sets. Besides, there is no control

on the infeasibilities of the solutions before optimality is reached in a simplex

method. Before moving to the next section of the chapter, it is important to

clarify that the PDCGM is more than a strategy which replaces the simplex

method with a primal-dual interior point method in column generation. It has

to be understood as a new column generation strategy that exploits the rich

information provided by a primal-dual interior point method (distance to

optimality) to obtain suboptimal solutions as needed. Also, the dynamic

adjustment of the tolerance ensures that the method does not stall and

converges to the optimal solution. Finally, the method requires only two

parameters to be set which have straightforward meanings:

$varepsilon_{max}$ defines the tolerance for the initial iterations when a

loose approximation of the MP is at hand, while D, determines how fast we

would like to approach the optimality. section{Computational

study}label{sec: pdcgm: results}In this section we present extensive

numerical results obtained by using different column generation strategies

for different applications. Note that the results included here follow a

different presentation than the ones discussed in cite{GonGonMun2013}. As

benchmarks we have chosen three different applications which are well

known in the column generation literature and have been described already

in Chapter ef{ch: formulations}: the cutting stock problem (CSP), the vehicle

routing problem with time windows (VRPTW), and the capacitated lot sizing

problem with setup times (CLSPST). For each application, we have

implemented three different column generation strategies which were

already described. A brief summary of each strategy and some

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 14

implementation considerations are given below:egin{itemize}item Standard

column generation (SCG): each RMP is solved to optimality by a simplex-type

method to obtain an extreme optimal dual solution. The implementation

closely follows the steps presented in Algorithm ef{alg: col_gen}. We have

used one of the best available linear programming solvers, CPLEX

cite{CPLEX} to obtain such a solution. Preliminary tests using the default

settings for each solver show that the primal simplex method is slightly

better than the dual method as the optimal basis remains primal feasible

from one outer iteration to another. The overall performance using the

barrier method (with crossover) was inferior to the other two methods. item

Primal-dual column generation (PDCGM): the suboptimal solutions of each

RMP are obtained by using the interior point solver HOPDM

cite{gondzio1995}, which is able to efficiently provide well-centred

suboptimal dual points. The algorithm has been already described in

Algorithm ef{alg: pdcgm}. item Analytic centre cutting plane (ACCPM): the

dual point at each iteration is an approximate analytic centre of the

localization set associated with the current RMP described in Section ef{sec:

cg: strategies}. The applications were implemented on top of the open-

source solver OBOE/COIN cite{OBOE}, a state-of-the-art implementation of

the analytic centre strategy with additional stabilization terms

cite{babonneau2007}. end{itemize}For each application and for the

aforementioned column generation strategies, the subproblems are solved

using the same source-code. We provide more details of the oracle solvers

used in each application later. Also, the SCG and the PDCGM are initialized

with the same columns and, hence, have the same initial RMP. The ACCPM

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 15

requires an initial dual point to start from, instead of a set of initial columns.

After preliminary tests, we have chosen initial dual points that led to a better

performance of the method on average. We have used different initial dual

points for each application, as specified later. All the computational

experiments in this section have been obtained using a computer with

processor Intel Core 2 Duo $2. 26$ Ghz, 4 GB RAM, and Linux operating

system. For each of the strategies, we stop the column generation procedure

when the relative gap becomes smaller than the default accuracy $delta =

10^{-6}$. The purpose of comparing the PDCGM against the SCG is to give

an idea of how much can be gained in overall performance in relation to the

standard approach using extreme dual solutions without any stabilization. It

is important to note that due to degeneracy issues an extreme optimal dual

solution obtained by the SCG can be at any vertex of the optimal facet of the

feasible polyhedra. Undoubtedly, it would be interesting to consider

stabilized versions of the standard column generation in our computational

comparisons. However, the lack of publicly available codes of stabilized

versions discouraged us to include them. For the interested reader, available

comparisons between standard and stabilized column generation are

available in the literature for the same applications cite{Rousseau2007,

BriLemMeuMicPerVan08, benamor2009}. Additionally, we have included the

ACCPM in our experiments for being a strategy that also relies on an interior

point method (although essentially different) providing well-centred dual

solutions. Before continuing, the performance of interior point methods in a

column generation by solving each RMP to optimality by a state-of-the-art

solver (HOPDM) has been tested. The results obtained were not better than

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 16

the ones obtained by the PDCGM which shows that an appropriate use of an

interior point method is essential for its success in the column generation

context. In the applications addressed in this thesis, the column generation

schemes are obtained by applying Dantzig-Wolfe decomposition (DWD) to

the corresponding integer programming formulations cite{dantzig1960,

vanderbeck2000}. In each application, the decomposition leads to an integer

MP and also an integer (pricing) subproblem. As shown in Chapter ef{ch:

formulations}, we relax the integrality of the variables in the integer MP and

then solve it by column generation, which gives a lower bound of the optimal

value of the original formulation. To obtain an integer solution, it would be

necessary to combine the column generation with a branch-and-bound

search, which is called a branch-and-price method cite{barnhart1998,

LubDes05}. However, this combination is out of the scope of this thesis, as

we are concerned with the behaviour of the column generation strategies. A

very recent attempt of combining the primal-dual column generation method

in a branch-and-price context to solve the vehicle routing problem with time

windows can be found in cite{MunGon2012}. This study shows encouraging

results when compared to the state-of-the-art method to solve this class of

problems. subsection{Cutting stock problem}To analyse the performance of

the different column generation strategies addressed here, we have initially

selected 262 instances from the one-dimensional CSP literature. All the

instances were obtained from url{http://www. math. tu-dresden.

de/~capad/}. For this application, the initial RMP consists of columns

generated by m homogeneous cutting patterns, which corresponds to

selecting only one piece per pattern as many times as possible without

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 17

violating the width W. In the ACCPM approach and after testing with

different values, we have used the initial guess $u^{0} = 0. 5 e$ which has

provided the best results for this strategy. The knapsack problem is solved

using a branch-and-bound method described in cite{leao2009}, the

implementation of which was provided by the author. paragraph{Adding one

column to the RMP per iteration}In the first set of numerical experiments we

consider that only one column is generated by the subproblem solver at

each iteration. We have classified the instances into different classes. Table

ef{csp-table-average} presents for each class and strategy: the average

number of outer iterations (ite), the average CPU time spent in the oracle in

seconds (or(s)) and the average CPU time required for the column generation

procedure in seconds (tot(s)). The number of instances per class is shown in

column $#$. The last row (ALL) presents the average results considering the

262 instances. Additionally, the last four columns show the ratio between

the extreme strategies and the PDCGM. From the results of our first set of

experiments, it seems clear that the PDCGM does not offer any savings in

terms of CPU time compared to the SCG when ``easy'' instances are solved

(classes MTP0xJES, MTP0, hard28, 7hard, 53NIRUPs and gau3). Note that

these classes are considered ``easy'' since the total time required to solve

the subproblems (oracle time) for all the strategies is less than 1 second in

average. Among these classes, the SCG is the strategy that offers the best

performance if total CPU time is considered. Note that the value of m

(number of different widths) included in this class varies from 20 to 189.

For all these classes, the PDCGM is the strategy that achieves the smallest

number of iterations on average. Similar results are obtained when

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 18

considering the class with more instances (mX), where m varies from

197 to 200. For this class, the oracle solver requires more time to find

the columns and therefore, the savings in terms of iterations start to pay off.

Finally, if we consider class U, with m varying from 15 to 585, the

best overall performance is provided by the PDCGM in both performance

measures, number of iteration and total CPU time. Note that for this class the

three strategies require a considerable time to solve the subproblems and

therefore, savings in number of iterations have an important impact on the

total CPU time. The ACCPM does not offer any benefit in any class when

compared to the other two strategies. If all the instances are considered, the

PDCGM offers the best overall performance. Observe that the RMPs solved at

each outer iteration are actually small/medium size linear programming

problems. The number of columns in the last RMP is approximately the

number of initial columns plus the number of outer iterations. Note that for

the SCG the time spent in solving the RMPs is very small in relation to the

time required to solve the subproblems, regardless the size of the instances.

It happens because the simplex method implementation available in CPLEX

is very efficient on solving/reoptimizing these linear programming problems.

For the PDCGM and the ACCPM, the proportion of the total CPU time required

to solve the RMP and the oracle varies according to the size of the

instances.egin{table}[H]setlength{abcolsep}

{3pt}scriptsizecaption{Average results on 262 instances of the CSP for

the SCG, PDCGM and ACCPM adding one column at a

time.}egin{adjustwidth}{-1in}{-1in}centeringegin{tabular}

{ccccccccccccccc}oprule&μlticolumn{3}{c}{extbf{SCG}}μlticolumn{3}{c}

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 19

{extbf{PDCGM}}μlticolumn{3}{c}{extbf{ACCPM}}μlticolumn{2}{c}

{inyextbf{SCG/PDCGM}}μlticolumn{2}{c}{inyextbf{ACCPM/

PDCGM}}midruleextbf{class}&extbf{#}&extbf{ite}&extbf{or(s)}&extbf{tot

(s)}&extbf{ite}&extbf{or(s)}&extbf{tot(s)}&extbf{ite}&extbf{or(s)}&extbf

{tot(s)}&extbf{ite}&extbf{tot(s)}&extbf{ite}&extbf{tot(s)}U&20&975.

6&632. 1&636. 8&782. 7&134. 4&154. 7&871. 5&582. 9&694. 7&1. 2&4.

1&1. 1&4. 5mX&145&803. 6&4. 1&5. 2&504. 2&4. 2&9. 2&651. 6&6. 3&20.

5&1. 6&0. 6&1. 3&2. 2MTP0xJES&3&379. 7&0. 8&0. 9&244. 7&0. 8&1.

6&294. 0&0. 8&2. 2&1. 6&0. 6&1. 2&1. 4MTP0&5&383. 0&0. 7&0. 8&264.

0&0. 6&1. 5&303. 6&0. 7&2. 4&1. 5&0. 5&1. 2&1. 6hard28&28&535. 7&0.

3&0. 8&386. 4&0. 5&2. 9&475. 8&0. 7&6. 1&1. 4&0. 3&1. 2&2.

17hard&7&390. 6&0. 2&0. 4&275. 1&0. 2&1. 4&342. 9&0. 3&2. 6&1. 4&0.

3&1. 2&1. 853NIRUPs&53&356. 6&0. 2&0. 4&221. 0&0. 2&1. 1&273. 5&0.

3&2. 1&1. 6&0. 3&1. 2&1. 8gau3&1&87. 0&0. 0&0. 0&73. 0&0. 0&0. 2&116.

0&0. 0&0. 1&1. 2&0. 1&1. 6&0. 7midrulef ALL&f 262&f 671. 0&f 50. 6&f 51.

7&f 440. 3&f 12. 7&f 17. 5&f 552. 1&f 48. 2&f 65. 6&f 1. 5&f 2. 9&f 1. 3&f 3.

7ottomruleend{tabular}%label{csp-table-

average}end{adjustwidth}end{table}%paragraph{Adding k-best columns

to the RMP per iteration}The knapsack solver used to solve the CSP

subproblems is able to obtain not only the optimal solution, but also the k-

best solutions for a given $k > 0$. Hence, we can generate up to k

columns in one call to the oracle to be added to the RMP. It usually improves

the performance of a column generation procedure, since more information

is gathered at each iteration. With this in mind, we carry out a second set of

experiments for the CSP in which we have tested these strategies for three

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 20

different values of k.egin{table}[H]setlength{abcolsep}

{3pt}scriptsizecaption{Average results on 262 instances of the CSP for

the SCG, PDCGM and ACCPM adding up to k columns at a

time.}egin{adjustwidth}{-1in}{-1in}centeringegin{tabular}

{ccccccccccccccc}oprule& & multicolumn{3}{c}{extbf{SCG}} &

multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}{extbf{ACCPM}}

& multicolumn{2}{c}{inyextbf{SCG/PDCGM}} & multicolumn{2}{c}

{inyextbf{ACCPM/PDCGM}}midruleextbf{k} & extbf{class} & extbf{ite} &

extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} &

extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{tot(s)} &

extbf{ite} & extbf{tot(s)} midrulemulticolumn{1}{c}{multirow{9}{*}

{extbf{10}}} & U & 304. 4 & 311. 9 & 315. 0 & 176. 2 & 57. 4 & 62. 5 &

293. 4 & 328. 8 & 435. 9 & 1. 7 & 5. 0 & 1. 7 & 7. 0 multicolumn{1}{c}{} &

mX & 219. 6 & 1. 9 & 2. 5 & 143. 0 & 1. 7 & 4. 0 & 365. 6 & 5. 3 & 53. 0 & 1.

5 & 0. 6 & 2. 6 & 13. 1 multicolumn{1}{c}{} & MTP0xJES & 82. 0 & 0. 3 & 0.

3 & 60. 0 & 0. 3 & 0. 6 & 133. 3 & 0. 7 & 2. 3 & 1. 4 & 0. 6 & 2. 2 & 3. 9

multicolumn{1}{c}{} & MTP0 & 84. 2 & 0. 2 & 0. 3 & 61. 8 & 0. 3 & 0. 6 &

137. 6 & 0. 6 & 2. 9 & 1. 4 & 0. 5 & 2. 2 & 4. 8 multicolumn{1}{c}{} &

hard28 & 149. 1 & 0. 2 & 0. 5 & 110. 7 & 0. 3 & 1. 4 & 257. 9 & 0. 8 & 16. 1

& 1. 3 & 0. 4 & 2. 3 & 11. 7 multicolumn{1}{c}{} & 7hard & 85. 3 & 0. 1 &

0. 2 & 70. 0 & 0. 1 & 0. 5 & 170. 6 & 0. 3 & 4. 7 & 1. 2 & 0. 4 & 2. 4 & 8. 7

multicolumn{1}{c}{} & 53NIRUPs & 82. 6 & 0. 1 & 0. 2 & 59. 2 & 0. 1 & 0. 5

& 141. 9 & 0. 3 & 4. 1 & 1. 4 & 0. 4 & 2. 4 & 8. 5 multicolumn{1}{c}{} &

gau3 & 25. 0 & 0. 0 & 0. 0 & 21. 0 & 0. 0 & 0. 1 & 78. 0 & 0. 0 & 0. 3 & 1. 2 &

0. 3 & 3. 7 & 4. 3 midrulemulticolumn{1}{c}{} & extbf{ALL} & extbf{182.

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 21

3} & extbf{24. 9} & extbf{25. 5} & extbf{120. 2} & extbf{5. 4} & extbf{7.

3} & extbf{290. 0} & extbf{28. 2} & extbf{65. 4} & extbf{1. 5} & extbf{3.

5} & extbf{2. 4} & extbf{9. 0} midrulemulticolumn{1}{c}{multirow{9}{*}

{extbf{50}}} & U & 186. 8 & 223. 8 & 228. 2 & 103. 2 & 64. 0 & 69. 7 &

277. 6 & 106. 4 & 372. 5 & 1. 8 & 3. 3 & 2. 7 & 5. 3 multicolumn{1}{c}{} &

mX & 109. 8 & 3. 9 & 4. 5 & 89. 1 & 4. 2 & 7. 6 & 408. 4 & 23. 4 & 223. 2 &

1. 2 & 0. 6 & 4. 6 & 29. 2 multicolumn{1}{c}{} & MTP0xJES & 35. 3 & 0. 3 &

0. 4 & 35. 0 & 0. 6 & 0. 8 & 122. 3 & 1. 9 & 4. 8 & 1. 0 & 0. 5 & 3. 5 & 5. 7

multicolumn{1}{c}{} & MTP0 & 31. 8 & 0. 3 & 0. 3 & 34. 6 & 0. 5 & 0. 8 &

137. 8 & 1. 7 & 7. 1 & 0. 9 & 0. 4 & 4. 0 & 9. 2 multicolumn{1}{c}{} &

hard28 & 66. 5 & 0. 6 & 0. 9 & 68. 8 & 0. 9 & 2. 4 & 279. 0 & 4. 4 & 57. 3 &

1. 0 & 0. 4 & 4. 1 & 23. 9 multicolumn{1}{c}{} & 7hard & 37. 0 & 0. 2 & 0.

3 & 42. 4 & 0. 4 & 0. 9 & 183. 1 & 1. 6 & 14. 6 & 0. 9 & 0. 4 & 4. 3 & 16. 6

multicolumn{1}{c}{} & 53NIRUPs & 33. 8 & 0. 2 & 0. 3 & 35. 8 & 0. 3 & 0. 7

& 148. 8 & 1. 3 & 12. 6 & 0. 9 & 0. 4 & 4. 2 & 17. 4 multicolumn{1}{c}{} &

gau3 & 13. 0 & 0. 0 & 0. 0 & 20. 0 & 0. 0 & 0. 1 & 84. 0 & 0. 2 & 0. 7 & 0. 7 &

0. 2 & 4. 2 & 5. 7 midrulemulticolumn{1}{c}{} & extbf{ALL} & extbf{91. 0}

& extbf{19. 4} & extbf{20. 1} & extbf{74. 1} & extbf{7. 4} & extbf{10. 0}

& extbf{316. 4} & extbf{21. 9} & extbf{161. 2} & extbf{1. 2} & extbf{2. 0}

& extbf{4. 3} & extbf{16. 1} midrulemulticolumn{1}{c}{multirow{9}{*}

{extbf{100}}} & U & 137. 6 & 248. 5 & 252. 5 & 85. 2 & 72. 1 & 79. 3 &

291. 6 & 158. 1 & 548. 3 & 1. 6 & 3. 2 & 3. 4 & 6. 9 multicolumn{1}{c}{} &

mX & 84. 8 & 8. 4 & 9. 0 & 76. 4 & 9. 6 & 14. 9 & 464. 2 & 68. 1 & 468. 8 &

1. 1 & 0. 6 & 6. 1 & 31. 5 multicolumn{1}{c}{} & MTP0xJES & 22. 7 & 0. 4 &

0. 5 & 28. 7 & 1. 0 & 1. 3 & 131. 3 & 3. 6 & 8. 3 & 0. 8 & 0. 4 & 4. 6 & 6. 6

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 22

multicolumn{1}{c}{} & MTP0 & 25. 4 & 0. 5 & 0. 5 & 28. 4 & 0. 8 & 1. 1 &

144. 0 & 3. 7 & 11. 0 & 0. 9 & 0. 5 & 5. 1 & 9. 7 multicolumn{1}{c}{} &

hard28 & 48. 2 & 1. 3 & 1. 5 & 57. 1 & 2. 2 & 4. 2 & 304. 1 & 13. 3 & 105. 5

& 0. 8 & 0. 4 & 5. 3 & 25. 2 multicolumn{1}{c}{} & 7hard & 27. 0 & 0. 5 &

0. 6 & 37. 4 & 0. 9 & 1. 5 & 198. 3 & 4. 3 & 35. 7 & 0. 7 & 0. 4 & 5. 3 & 23. 6

multicolumn{1}{c}{} & 53NIRUPs & 23. 5 & 0. 4 & 0. 5 & 30. 5 & 0. 7 & 1. 2

& 158. 4 & 3. 4 & 25. 7 & 0. 8 & 0. 4 & 5. 2 & 21. 4 multicolumn{1}{c}{} &

gau3 & 8. 0 & 0. 0 & 0. 0 & 17. 0 & 0. 1 & 0. 2 & 87. 0 & 0. 3 & 3. 6 & 0. 5 &

0. 2 & 5. 1 & 21. 1 midrulemulticolumn{1}{c}{} & extbf{ALL} & extbf{68.

8} & extbf{23. 9} & extbf{24. 6} & extbf{63. 0} & extbf{11. 3} & extbf{15.

1} & extbf{353. 6} & extbf{52. 1} & extbf{319. 1} & extbf{1. 1} & extbf{1.

6} & extbf{5. 6} & extbf{21. 2} ottomruleend{tabular}%label{csp-table-

k_columns}end{adjustwidth}end{table}%In Table ef{csp-table-k_columns},

we present the results obtained by adding more than one column at each

iteration. For the ``easy'' classes, the SCG is more efficient than the PDCGM

and the ACCPM, regardless the number of columns added at each iteration.

Similar results are obtained when class mX is considered. However, when

instances in class U are solved, the PDCGM is on average more efficient than

the SCG and the ACCPM in terms of both outer iterations and CPU time. For

instance, if we consider $k = 100$, the PDCGM is $3. 2$ times faster than

the SCG and $6. 9$ times faster than the ACCPM. Similar results are

observed when all instances are considered. Again for $k= 100$, the PDCGM

is $1. 6$ times faster than the SCG and $21. 1$ times faster than the ACCPM

on average. The results indicate that the best overall strategy to solve this

selection of 262 instances is the PDCGM with $k= 10$, which is on

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 23

average $2. 8$ and $9. 0$ times faster than the best result found with the

SCG ($k= 50$) and the ACCPM ($k= 10$), respectively. Clearly, the

behaviour of the ACCPM is adversely affected by the number of columns

added at a time, as the number of iterations and the CPU time required for

solving the RMPs are considerably increased for larger values of k. The

main reason for this behaviour is that the localization set may be drastically

changed from one outer iteration to another if many columns are added.

Hence, finding the new analytic centre can be very expensive in this case. A

discussion about the warmstarting strategy proposed for the ACCPM is

included in Chapter ef{ch: warmstarting}. To conclude this initial set of

experiments, it is fair to say that the PDCGM outperforms the other two

strategies because it is considerably more efficient in solving the difficult

instances in class U. In order to study whether this relative performance can

be extended to even larger instances, we have performed a second set of

experiments. Additionally, and in order to study the impact of the size of the

problems on the different strategy behaviours we have further selected 14

large instances from url{http://www. math. tu-dresden. de/~capad/} and

compared the performance of the three column generation approaches.

These instances have m varying from 615 to 1005, which leads to

larger restricted master problems and also larger subproblems. Table ef{csp-

table-very_large} shows the results of this experiment when 100 columns

are added per iteration. In all cases, the PDCGM is faster and requires fewer

iterations than the SCG and the ACCPM, which supports the conclusion that

the relative performance of the PDCGM is improved as the instances become

larger and more difficult.egin{table}[H]setlength{abcolsep}

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 24

{4pt}scriptsizecaption{Results on 14 large instances of the CSP for the

SCG, PDCGM and ACCPM adding up to 100 columns at a

time.}egin{adjustwidth}{-1in}{-1in}centeringegin{tabular}

{ccccccccccccccc}opruleextbf{} & multicolumn{1}{c}{extbf{}} &

multicolumn{3}{c}{extbf{SCG}} & multicolumn{3}{c}{extbf{PDCGM}} &

multicolumn{3}{c}{extbf{ACCPM}} &

multicolumn{2}{c}{inyextbf{SCG/PDCGM}} & multicolumn{2}{c}

{inyextbf{ACCPM/PDCGM}}midruleextbf{name} & multicolumn{1}{c}

{extbf{m}} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} &

extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} &

extbf{ite} & extbf{tot(s)} & extbf{ite} & extbf{tot(s)} midruleU09498 &

1005 & 548 & 12760 & 12947 & 293 & 5545 & 5678 & 762 & 10054 & 21254

& 1. 9 & 2. 3 & 2. 6 & 3. 7 U09513 & 975 & 518 & 9741 & 9904 & 267 &

4169 & 4277 & 779 & 7404 & 19362 & 1. 9 & 2. 3 & 2. 9 & 4. 5 U09528 &

945 & 541 & 9011 & 9173 & 276 & 4811 & 4924 & 740 & 6586 & 15920 & 2.

0 & 1. 9 & 2. 7 & 3. 2 U09543 & 915 & 506 & 7676 & 7798 & 263 & 3624 &

3724 & 723 & 5255 & 13449 & 1. 9 & 2. 1 & 2. 7 & 3. 6 U09558 & 885 & 482

& 5479 & 5585 & 265 & 2631 & 2730 & 683 & 4222 & 10861 & 1. 8 & 2. 0 &

2. 6 & 4. 0 U09573 & 855 & 473 & 4694 & 4771 & 230 & 1980 & 2054 & 672

& 3732 & 9794 & 2. 1 & 2. 3 & 2. 9 & 4. 8 U09588 & 825 & 467 & 4876 &

4950 & 247 & 1574 & 1649 & 658 & 3983 & 9376 & 1. 9 & 3. 0 & 2. 7 & 5. 7

U09603 & 795 & 465 & 3894 & 3962 & 237 & 1598 & 1668 & 627 & 3055 &

7504 & 2. 0 & 2. 4 & 2. 6 & 4. 5 U09618 & 765 & 424 & 2773 & 2830 & 203

& 1042 & 1092 & 617 & 2156 & 6467 & 2. 1 & 2. 6 & 3. 0 & 5. 9 U09633 &

735 & 432 & 2833 & 2878 & 217 & 912 & 969 & 595 & 1751 & 5308 & 2. 0 &

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 25

3. 0 & 2. 7 & 5. 5 U09648 & 705 & 424 & 2611 & 2659 & 209 & 808 & 857 &

582 & 1403 & 4466 & 2. 0 & 3. 1 & 2. 8 & 5. 2 U09663 & 675 & 381 & 2156

& 2187 & 202 & 613 & 654 & 534 & 1074 & 3325 & 1. 9 & 3. 3 & 2. 6 & 5. 1

U09678 & 645 & 376 & 1745 & 1775 & 173 & 387 & 418 & 542 & 1043 &

3395 & 2. 2 & 4. 3 & 3. 1 & 8. 1 U09693 & 615 & 384 & 1324 & 1347 & 165

& 401 & 427 & 520 & 876 & 2773 & 2. 3 & 3. 2 & 3. 2 & 6. 5

ottomruleend{tabular}%label{csp-table-

very_large}end{adjustwidth}end{table}%subsection{Vehicle routing

problem with time windows}label{sub: pdcgm: vrptw}In order to test the

behaviour of the different column generation strategies in the VRPTW, we

have selected 87 instances from the literature (url{http://www2. imm. dtu.

dk/~jla/solomon. html}), which were originally proposed in

cite{solomon1987}. The initial columns of the RMP have been generated by

n single-customer routes which correspond to assigning one vehicle per

customer. In the ACCPM approach, we have considered the initial guess

$u^{0} = 100. 0 e$ which after testing various settings has proven to be

the choice which gives the best overall results for this application. Note that

although several algorithms are available in the literature for solving the

pricing problem (see cite{irnich2005} for a survey), solving it to optimality

may require a relatively large CPU time, especially when the time windows

are wide. As a consequence, a relaxed version is solved in practice, in which

non-elementary paths are allowed (extit{i. e.}, paths that visit the same

customer more than once). Even though the lower bound provided by the

column generation scheme may be slightly worse in this case, the CPU time

to solve the subproblem is considerably reduced. In all our implementations,

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 26

the subproblem is solved by our own implementation of the bounded

bidirectional dynamic programming algorithm proposed in cite{righini2009},

with state-space relaxation and identification of unreachable nodes

cite{feillet2004}. For more details about this implementation, we refer the

reader to cite{MunGon2012}. paragraph{Adding one column to the RMP}In

Table ef{vrptw-table-average} we compare the performance of the three

strategies when only one column is added to the RMP at each iteration. For

each class and strategy we present: the number of outer iterations (ite), the

average CPU time to solve the subproblems in seconds (or(s)) and the

average total CPU time required for the column generation in seconds

(tot(s)). Column $#$ contains the number of instances per class. The last

row (ALL) shows the average results considering the 87 instances. In the

last four columns, the ratios between the extreme strategies and the PDCGM

in terms of outer iterations and total CPU time, are presented. The instances

are grouped in terms of the distribution of the customers (C: cluster; R:

random; RC: a combination of both) and number of customers (25, 50

and 100). For instance, class C50 contains instances in which 50

customers are distributed in clusters. For all the classes, the PDCGM shows

the best average performance in the number of iterations and total CPU time

compared with the other two strategies. When the size of the instances

increases, the difference between the SCG and the other two strategies

increases as well, with the SCG being the one which shows the worst overall

performance. Considering the 87 instances, the PDCGM is on average $3.

6$ and $1. 3$ times faster than the SCG and the ACCPM, respectively. Notice

that, differently from what was observed on the CSP results, the CPU time

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 27

required for solving the RMPs (difference between tot(s) and or(s)) is very

small not only for the SCG, but also for the PDCGM and the ACCPM. In the

VRPTW, the RMPs have the set covering structure, which corresponds to a

very sparse coefficient matrix, a property that is well exploited by the

solvers.egin{table}[H]setlength{abcolsep}{3pt}scriptsizecaption{Average

results on 87 instances of the VRPTW for the SCG, PDCGM and ACCPM

adding one column at a time.}egin{adjustwidth}{-1in}{-

1in}centeringegin{tabular}{ccccccccccccccc}oprule& & multicolumn{3}{c}

{extbf{SCG}} & multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}

{extbf{ACCPM}} & multicolumn{2}{c}{inyextbf{SCG/PDCGM}} &

multicolumn{2}{c}{inyextbf{ACCPM/PDCGM}}midruleextbf{class} & # &

extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} &

extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} &

extbf{tot(s)} & extbf{ite} & extbf{tot(s)} midruleC25 & 9 & 142. 3 & 1. 0 &

1. 0 & 35. 7 & 0. 3 & 0. 3 & 53. 6 & 0. 3 & 0. 4 & 4. 0 & 3. 1 & 1. 5 & 1. 1 R25

& 12 & 77. 8 & 0. 3 & 0. 4 & 52. 9 & 0. 2 & 0. 3 & 146. 0 & 0. 2 & 0. 4 & 1. 5

& 1. 1 & 2. 8 & 1. 1 RC25 & 8 & 85. 3 & 1. 1 & 1. 2 & 57. 1 & 0. 8 & 0. 9 &

107. 0 & 1. 0 & 1. 2 & 1. 5 & 1. 3 & 1. 9 & 1. 4 C50 & 9 & 446. 7 & 32. 1 &

32. 3 & 60. 3 & 4. 4 & 4. 5 & 74. 6 & 4. 4 & 4. 6 & 7. 4 & 7. 1 & 1. 2 & 1. 0

R50 & 12 & 211. 6 & 12. 2 & 12. 3 & 122. 7 & 4. 8 & 5. 1 & 214. 9 & 6. 4 & 6.

8 & 1. 7 & 2. 4 & 1. 8 & 1. 3 RC50 & 8 & 193. 8 & 18. 2 & 18. 3 & 115. 5 & 9.

8 & 10. 1 & 182. 6 & 12. 7 & 13. 1 & 1. 7 & 1. 8 & 1. 6 & 1. 3 C100 & 9 &

1049. 7 & 333. 8 & 334. 8 & 115. 8 & 51. 9 & 52. 3 & 127. 9 & 50. 0 & 50. 4

& 9. 1 & 6. 4 & 1. 1 & 1. 0 R100 & 12 & 700. 6 & 549. 0 & 549. 7 & 260. 2 &

157. 5 & 158. 4 & 375. 6 & 205. 9 & 207. 8 & 2. 7 & 3. 5 & 1. 4 & 1. 3 RC100

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 28

& 8 & 660. 1 & 503. 5 & 504. 1 & 254. 1 & 168. 7 & 169. 5 & 351. 9 & 227. 4

& 229. 2 & 2. 6 & 3. 0 & 1. 4 & 1. 4 midruleextbf{ALL} & extbf{87} &

extbf{392. 4} & extbf{163. 5} & extbf{163. 8} & extbf{121. 3} & extbf{44.

8} & extbf{45. 1} & extbf{187. 1} & extbf{57. 1} & extbf{57. 8} & extbf{3.

2} & extbf{3. 6} & extbf{1. 5} & extbf{1. 3} ottomruleend{tabular}

%label{vrptw-table-average}end{adjustwidth}end{table}

%paragraph{Adding k-best columns to the RMP}Since the subproblem

solver is able to provide the k-best solutions at each iteration, we have run

a second set of experiments. For each column generation method, we have

solved each instance with k equal to 10, 50, 100, 200 and

300. In Table ef{vrptw-table-relative-k_columns} we show the results of

these experiments where column k denotes the maximum number of

columns added at each iteration to the RMP. For the three classes with 25

customers (C25, R25 and RC25), the SCG and the PDCGM have a similar

overall performance up to a point in which the SCG outperforms the PDCGM.

This is due to the fact that the RMPs are solved more efficiently by the solver

in CPLEX than HOPDM. However, it is important to note that all the instances

in these classes, are solved in less than 1 second in average by the two

strategies. Now, if we take into account classes with 50 and 100

customers, the results obtained considering the total CPU time show that the

PDCGM is consistently more efficient than the SCG for every k. In terms of

column generation iterations, the results obtained with the PDCGM and SCG

for different values of k when 50 customers are considered are similar

and there is not a clear winner. However, if larger instances are considered

(emph{i. e.,} 100 customers), the PDCGM outperforms the SCG. On the

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 29

other hand, the PDCGM is consistently better than the ACCPM in both

performance measures, for all the classes and for all the choices of k. Note

that the performance of the ACCPM seems to be unaffected by the number

of columns added per iteration. For all the strategies and values of k, the

PDCGM with $k = 200$ is the most efficient setting on average, as it is $1.

6$ and $4. 5$ times faster than the best results obtained with the SCG ($k=

300$) and the ACCPM ($k= 100$), respectively.egin{table}

[H]setlength{abcolsep}{4pt}scriptsizecaption{Average results on 87

instances of the VRPTW for the SCG, PDCGM and ACCPM adding up to k

columns at a time.}egin{adjustwidth}{-1in}{-1in}centeringegin{tabular}

{ccccccccccccccc}opruleextbf{} & extbf{} & multicolumn{3}{c}

{extbf{SCG}} & multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}

{extbf{ACCPM}} & multicolumn{2}{c}{inyextbf{SCG/PDCGM}} &

multicolumn{2}{c}{inyextbf{ACCPM/PDCGM}}midruleextbf{k} &

extbf{class} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} &

extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} &

extbf{ite} & extbf{tot(s)} & extbf{ite} & extbf{tot(s)} midrulemultirow{10}

{*}{extbf{10}} & C25 & 35. 8 & 0. 4 & 0. 4 & 18. 9 & 0. 1 & 0. 2 & 44. 3 &

0. 2 & 0. 3 & 1. 9 & 2. 2 & 2. 3 & 1. 6 & R25 & 19. 3 & 0. 1 & 0. 1 & 22. 9 & 0.

1 & 0. 2 & 126. 9 & 0. 1 & 0. 3 & 0. 8 & 0. 7 & 5. 5 & 1. 8 & RC25 & 25. 6 & 0.

4 & 0. 4 & 25. 1 & 0. 3 & 0. 4 & 99. 1 & 0. 9 & 1. 0 & 1. 0 & 1. 1 & 3. 9 & 2. 7

& C50 & 101. 1 & 9. 4 & 9. 5 & 28. 1 & 1. 8 & 1. 9 & 56. 8 & 3. 3 & 3. 4 & 3. 6

& 4. 9 & 2. 0 & 1. 8 & R50 & 49. 8 & 3. 9 & 3. 9 & 40. 1 & 2. 0 & 2. 2 & 158. 0

& 4. 4 & 4. 8 & 1. 2 & 1. 8 & 3. 9 & 2. 2 & RC50 & 53. 4 & 5. 8 & 5. 9 & 45. 0

& 3. 8 & 3. 9 & 141. 3 & 9. 3 & 9. 6 & 1. 2 & 1. 5 & 3. 1 & 2. 4 & C100 & 271.

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 30

9 & 93. 5 & 94. 3 & 49. 3 & 16. 5 & 16. 9 & 91. 7 & 32. 0 & 32. 5 & 5. 5 & 5. 6

& 1. 9 & 1. 9 & R100 & 152. 4 & 125. 4 & 125. 8 & 86. 2 & 52. 0 & 52. 7 &

205. 5 & 105. 2 & 106. 9 & 1. 8 & 2. 4 & 2. 4 & 2. 0 & RC100 & 147. 8 & 118.

3 & 118. 7 & 78. 3 & 52. 0 & 52. 6 & 207. 1 & 135. 7 & 137. 1 & 1. 9 & 2. 3 &

2. 6 & 2. 6 midrule& extbf{ALL} & extbf{93. 7} & extbf{40. 0} & extbf{40.

2} & extbf{44. 2} & extbf{14. 5} & extbf{14. 8} & extbf{128. 7} &

extbf{32. 2} & extbf{32. 8} & extbf{2. 1} & extbf{2. 7} & extbf{2. 9} &

extbf{2. 2} midrulemultirow{10}{*}{extbf{50}} & C25 & 20. 0 & 0. 3 & 0.

3 & 17. 8 & 0. 1 & 0. 2 & 43. 1 & 0. 2 & 0. 3 & 1. 1 & 1. 4 & 2. 4 & 1. 5 & R25

& 10. 2 & 0. 1 & 0. 1 & 17. 3 & 0. 1 & 0. 1 & 126. 8 & 0. 1 & 0. 3 & 0. 6 & 0. 6

& 7. 4 & 2. 2 & RC25 & 14. 5 & 0. 3 & 0. 3 & 19. 6 & 0. 2 & 0. 3 & 95. 4 & 0. 9

& 1. 1 & 0. 7 & 0. 8 & 4. 9 & 3. 3 & C50 & 49. 6 & 5. 2 & 5. 3 & 23. 0 & 1. 4 &

1. 6 & 55. 1 & 3. 1 & 3. 3 & 2. 2 & 3. 3 & 2. 4 & 2. 1 & R50 & 24. 3 & 2. 4 & 2.

4 & 26. 7 & 1. 3 & 1. 5 & 155. 8 & 4. 3 & 4. 7 & 0. 9 & 1. 5 & 5. 8 & 3. 0 &

RC50 & 27. 8 & 3. 2 & 3. 2 & 29. 8 & 2. 3 & 2. 5 & 139. 3 & 9. 4 & 9. 8 & 0. 9

& 1. 3 & 4. 7 & 3. 8 & C100 & 131. 0 & 46. 8 & 47. 7 & 40. 6 & 12. 9 & 13. 6

& 88. 4 & 31. 0 & 32. 0 & 3. 2 & 3. 5 & 2. 2 & 2. 4 & R100 & 68. 2 & 58. 8 &

59. 3 & 55. 3 & 32. 3 & 33. 6 & 195. 9 & 95. 1 & 97. 9 & 1. 2 & 1. 8 & 3. 5 &

2. 9 & RC100 & 69. 5 & 58. 0 & 58. 4 & 47. 5 & 31. 4 & 32. 2 & 205. 4 & 133.

6 & 135. 4 & 1. 5 & 1. 8 & 4. 3 & 4. 2 midrule& extbf{ALL} & extbf{45. 2} &

extbf{19. 5} & extbf{19. 7} & extbf{31. 0} & extbf{9. 3} & extbf{9. 7} &

extbf{125. 8} & extbf{30. 5} & extbf{31. 3} & extbf{1. 5} & extbf{2. 0} &

extbf{4. 1} & extbf{3. 2} midrulemultirow{10}{*}{extbf{100}} & C25 &

16. 6 & 0. 2 & 0. 2 & 16. 6 & 0. 1 & 0. 2 & 43. 9 & 0. 2 & 0. 4 & 1. 0 & 1. 2 &

2. 7 & 1. 8 & R25 & 8. 8 & 0. 1 & 0. 1 & 15. 8 & 0. 1 & 0. 2 & 126. 8 & 0. 1 &

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 31

0. 3 & 0. 6 & 0. 5 & 8. 1 & 2. 1 & RC25 & 12. 3 & 0. 2 & 0. 2 & 18. 4 & 0. 2 &

0. 3 & 95. 1 & 0. 9 & 1. 1 & 0. 7 & 0. 7 & 5. 2 & 3. 3 & C50 & 39. 3 & 4. 4 & 4.

5 & 21. 0 & 1. 5 & 1. 8 & 55. 6 & 3. 2 & 3. 6 & 1. 9 & 2. 4 & 2. 6 & 2. 0 & R50

& 18. 5 & 2. 0 & 2. 0 & 23. 4 & 1. 1 & 1. 4 & 154. 5 & 4. 2 & 4. 8 & 0. 8 & 1. 4

& 6. 6 & 3. 5 & RC50 & 22. 3 & 2. 8 & 2. 8 & 25. 3 & 1. 8 & 2. 1 & 139. 5 & 9.

5 & 10. 0 & 0. 9 & 1. 4 & 5. 5 & 4. 9 & C100 & 94. 7 & 35. 2 & 36. 3 & 31. 8 &

11. 8 & 12. 8 & 90. 9 & 31. 1 & 32. 9 & 3. 0 & 2. 8 & 2. 9 & 2. 6 & R100 & 53.

1 & 45. 7 & 46. 2 & 40. 0 & 23. 3 & 24. 6 & 196. 8 & 94. 2 & 98. 2 & 1. 3 & 1.

9 & 4. 9 & 4. 0 & RC100 & 50. 9 & 43. 0 & 43. 4 & 41. 6 & 25. 3 & 26. 5 &

204. 4 & 130. 2 & 132. 7 & 1. 2 & 1. 6 & 4. 9 & 5. 0 midrule& extbf{ALL} &

extbf{34. 5} & extbf{14. 9} & extbf{15. 2} & extbf{25. 9} & extbf{7. 3} &

extbf{7. 8} & extbf{126. 0} & extbf{30. 1} & extbf{31. 3} & extbf{1. 3} &

extbf{1. 9} & extbf{4. 9} & extbf{4. 0} midrulemultirow{10}{*}

{extbf{200}} & C25 & 13. 6 & 0. 2 & 0. 2 & 15. 9 & 0. 1 & 0. 3 & 44. 7 & 0. 2

& 0. 4 & 0. 9 & 0. 8 & 2. 8 & 1. 6 & R25 & 7. 0 & 0. 1 & 0. 1 & 15. 1 & 0. 1 &

0. 2 & 126. 8 & 0. 2 & 0. 3 & 0. 5 & 0. 4 & 8. 4 & 1. 8 & RC25 & 9. 9 & 0. 2 &

0. 2 & 18. 0 & 0. 2 & 0. 4 & 94. 4 & 0. 9 & 1. 1 & 0. 5 & 0. 5 & 5. 2 & 2. 8 &

C50 & 31. 1 & 3. 5 & 3. 6 & 19. 3 & 1. 1 & 1. 6 & 57. 6 & 3. 0 & 3. 8 & 1. 6 &

2. 3 & 3. 0 & 2. 4 & R50 & 14. 8 & 1. 6 & 1. 7 & 21. 5 & 1. 0 & 1. 4 & 155. 6 &

4. 2 & 4. 9 & 0. 7 & 1. 2 & 7. 2 & 3. 5 & RC50 & 18. 1 & 2. 1 & 2. 1 & 22. 6 &

1. 6 & 2. 1 & 140. 0 & 9. 6 & 10. 2 & 0. 8 & 1. 0 & 6. 2 & 4. 9 & C100 & 69. 3

& 27. 0 & 28. 2 & 27. 9 & 9. 7 & 11. 2 & 92. 7 & 31. 0 & 34. 9 & 2. 5 & 2. 5 &

3. 3 & 3. 1 & R100 & 41. 4 & 36. 3 & 36. 9 & 35. 0 & 19. 5 & 21. 5 & 198. 8 &

90. 3 & 100. 8 & 1. 2 & 1. 7 & 5. 7 & 4. 7 & RC100 & 41. 6 & 35. 4 & 35. 9 &

33. 5 & 21. 1 & 22. 7 & 204. 3 & 127. 5 & 132. 8 & 1. 2 & 1. 6 & 6. 1 & 5. 8

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 32

midrule& extbf{ALL} & extbf{26. 9} & extbf{11. 9} & extbf{12. 1} &

extbf{23. 2} & extbf{6. 1} & extbf{6. 9} & extbf{126. 9} & extbf{29. 3} &

extbf{31. 9} & extbf{1. 2} & extbf{1. 8} & extbf{5. 5} & extbf{4. 7}

midrulemultirow{10}{*}{extbf{300}} & C25 & 12. 3 & 0. 2 & 0. 2 & 16. 3 &

0. 1 & 0. 4 & 46. 1 & 0. 2 & 0. 5 & 0. 8 & 0. 5 & 2. 8 & 1. 3 & R25 & 6. 6 & 0.

1 & 0. 1 & 14. 3 & 0. 1 & 0. 2 & 126. 8 & 0. 1 & 0. 3 & 0. 5 & 0. 3 & 8. 8 & 1.

6 & RC25 & 10. 3 & 0. 2 & 0. 2 & 17. 4 & 0. 2 & 0. 5 & 96. 0 & 0. 9 & 1. 2 & 0.

6 & 0. 4 & 5. 5 & 2. 5 & C50 & 26. 3 & 3. 0 & 3. 2 & 19. 1 & 1. 2 & 2. 0 & 58.

6 & 2. 9 & 4. 1 & 1. 4 & 1. 6 & 3. 1 & 2. 0 & R50 & 12. 8 & 1. 5 & 1. 5 & 20. 6

& 0. 9 & 1. 4 & 155. 5 & 4. 2 & 5. 1 & 0. 6 & 1. 1 & 7. 6 & 3. 6 & RC50 & 16. 4

& 2. 1 & 2. 1 & 21. 8 & 1. 6 & 2. 2 & 140. 0 & 9. 2 & 9. 9 & 0. 8 & 1. 0 & 6. 4

& 4. 5 & C100 & 57. 0 & 24. 2 & 25. 8 & 28. 0 & 9. 5 & 11. 9 & 96. 6 & 31. 2

& 38. 6 & 2. 0 & 2. 2 & 3. 4 & 3. 2 & R100 & 35. 7 & 30. 8 & 31. 5 & 33. 4 &

18. 7 & 21. 7 & 197. 6 & 85. 4 & 100. 3 & 1. 1 & 1. 5 & 5. 9 & 4. 6 & RC100 &

36. 9 & 30. 7 & 31. 3 & 32. 6 & 20. 0 & 22. 3 & 206. 4 & 124. 6 & 132. 0 & 1.

1 & 1. 4 & 6. 3 & 5. 9 midrule& extbf{ALL} & extbf{23. 3} & extbf{10. 3} &

extbf{10. 7} & extbf{22. 6} & extbf{5. 8} & extbf{7. 0} & extbf{127. 7} &

extbf{28. 3} & extbf{32. 2} & extbf{1. 0} & extbf{1. 5} & extbf{5. 7} &

extbf{4. 6} ottomruleend{tabular}%label{vrptw-table-relative-

k_columns}end{adjustwidth}end{table}%Additionally, we have tested the

three described column generation strategies in more challenging instances

with 200, 400 and 600 customers, which were proposed in

cite{homberger2005}. Table ef{vrptw-table-relative-large} shows the

results of this third round of experiments, adding 300 columns per

iteration. The columns have the same meaning as in Table ef{vrptw-table-

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 33

average}. For all these instances, the PDCGM requires less CPU time and

fewer iterations when compared with the SCG and the ACCPM. For the most

difficult instance the PDCGM is $2. 1$ and $6. 4$ times faster than the SCG

and the ACCPM, respectively.egin{table}[h]setlength{abcolsep}

{4pt}scriptsizecaption{Results on 9 large instances of the VRPTW for the

SCG, PDCGM and ACCPM adding 300 columns at a

time.}egin{adjustwidth}{-1in}{-1in}centeringegin{tabular}

{cccccccccccccc}opruleextbf{} & multicolumn{3}{c}{extbf{SCG}} &

multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}{extbf{ACCPM}}

& multicolumn{2}{c}{inyextbf{SCG/PDCGM}} & multicolumn{2}{c}

{inyextbf{ACCPM/PDCGM}}midruleextbf{name} & extbf{ite} & extbf{or(s)}

& extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} &

extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{tot(s)} & extbf{ite} &

extbf{tot(s)} midruleC200 & 85 & 33 & 41 & 29 & 13 & 15 & 169 & 72 & 82

& 2. 9 & 2. 7 & 5. 8 & 5. 4 R200 & 57 & 36 & 43 & 45 & 26 & 34 & 423 & 192

& 202 & 1. 3 & 1. 2 & 9. 4 & 5. 9 RC200 & 67 & 105 & 110 & 57 & 77 & 88 &

385 & 567 & 607 & 1. 2 & 1. 2 & 6. 8 & 6. 9 C400 & 137 & 453 & 552 & 53 &

171 & 186 & 272 & 886 & 909 & 2. 6 & 3. 0 & 5. 1 & 4. 9 R400 & 131 & 793

& 865 & 84 & 596 & 640 & 636 & 2994 & 3076 & 1. 6 & 1. 4 & 7. 6 & 4. 8

RC400 & 189 & 2706 & 2789 & 113 & 1360 & 1436 & 521 & 6548 & 6649 &

1. 7 & 1. 9 & 4. 6 & 4. 6 C600 & 183 & 1921 & 2335 & 48 & 496 & 510 & 482

& 5115 & 5173 & 3. 8 & 4. 6 & 10. 0 & 10. 1 R600 & 222 & 7226 & 7558 &

118 & 4142 & 4260 & 897 & 25599 & 25870 & 1. 9 & 1. 8 & 7. 6 & 6. 1

RC600 & 258 & 18701 & 18972 & 150 & 8677 & 8844 & 923 & 56177 &

56683 & 1. 7 & 2. 1 & 6. 2 & 6. 4 ottomruleend{tabular}%label{vrptw-table-

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 34

relative-large}end{adjustwidth}end{table}%Finally, the benefits of using

the PDCGM for solving the relaxation of the VRPTW after applying DWD are

accentuated with the size and difficulty of the instances, so the larger the

instance, the larger the benefits of using this column generation strategy.

subsection{Capacitated lot-sizing problem with setup times}In order to

cover a wider spectrum of applications, we have considered the capacitated

lot-sizing problem with setup times described in Chapter ef{ch:

formulations}. The problem decomposes naturally in blocks for different

items and therefore m different subproblems are obtained (one per item).

This allows to test the column generation strategies when m essentially

different columns are added in a disaggregated framework which differs from

the previous two applications. Each subproblem is a single-item lot sizing

problem with modified production and setup costs, and without capacity

constraints. Hence, it can be solved by the Wagner-Whitin algorithm

cite{WagWhi58}. We have selected 751 instances proposed in

cite{TriThoMcC89} to test the aforementioned column generation strategies.

The SCG and the PDCGM approaches are initialized using a single-column

Big-M technique. The coefficients of this column are set to 0 in the

capacity constraints and 1 in the convexity constraints. In the ACCPM

approach, after several settings, we have chosen $u^{0}= 10. 0e$ as the

initial dual point. For all the column generation strategies we use the same

subproblem solver which is our own implementation of the Wagner-Whitin

algorithm cite{WagWhi58}. For each column generation strategy, we found

that the 751 instances were solved in less than 100 seconds. The

majority of them were solved in less than $0. 1$ seconds. From these

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 35

results, no meaningful comparisons and conclusions can be derived, so we

have modified the instances in order to challenge the column generation

approaches. For each instance and for each product we have replicated their

demands 5 times and divided the capacity, processing time, setup time

and costs by the same factor. Also, we have increased the capacity by

$10\\%$. Note that we have increased the size of the problems in time

periods but not in items and therefore, all instances remain feasible. In Table

ef{clspst-table-average}, we show a summary of our findings using these

modified instances. We have grouped the instances in seven different

classes. Small instances are included in classes E, F and W while classes G,

X1, X2 and X3 contain larger instances. Instances in classes E and F contain

6 items and 75 time periods while instances in class W have 4 or 8

items and 75 time periods. In class G, the instances have 6, 12 or

24 items and 75 or 150 time periods. Classes X1, X2 and X3 contain

instances with 100 time periods and 10, 20 and 30 items,

respectively. For each class and strategy we present: the number of column

generation iterations (ite), the average CPU time required to solve the

subproblems in seconds (or(s)) and the average total CPU time required for

the column generation (tot(s)) in seconds. Column $#$ indicates the number

of instances per class. The last row (ALL) shows the average results

considering the 751 modified instances. From Table ef{clspst-table-

average}, we can conclude that the strategies have different performances

for the classes with small instances and on average each strategy requires

less than 2 seconds to solve an instance from these classes. If we consider

the total CPU time, the SCG is slightly better for classes E and F, and the

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 36

ACCPM outperforms the other two strategies only in class W. Considering the

oracle times, we observe that for small instances the PDCGM outperforms

the SCG due to the reduction in the number of outer iterations. However this

reduction is somehow lost due to the fact that the PDCGM requires

considerable time to solve the RMPs while the time required by the SCG is

negligible. Now, if we observe the performance of the strategies on the

classes with larger instances (emph{i. e.}, G, X1, X2 and X3), the PDCGM

outperforms the other two strategies on average in both performance

measures. Furthermore, considering the 751 instances, the PDCGM

reduces the average number of outer iterations and total CPU time when

compared with the ACCPM and the SCG.egin{table}[t]setlength{abcolsep}

{3pt}scriptsizecaption{Average results on 751 instances of the CLSPST

for the SCG, PDCGM and ACCPM adding one column per subproblem at a

time.}egin{adjustwidth}{-1in}{-1in}centeringegin{threeparttable}

[b]egin{tabular}{ccccccccccccccc}oprule& & multicolumn{3}{c}

{extbf{SCG}} & multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}

{extbf{ACCPM}note{1}} & multicolumn{2}{c}{inyextbf{SCG/PDCGM}} &

multicolumn{2}{c}{inyextbf{ACCPM/PDCGM}}midruleextbf{class} & # &

extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} &

extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} &

extbf{tot(s)} & extbf{ite} & extbf{tot(s)} midruleE & 58 & 38. 1 & 0. 7 & 0.

7 & 29. 7 & 0. 5 & 0. 9 & 38. 3 & 0. 7 & 0. 8 & 1. 3 & 0. 9 & 1. 3 & 1. 0 F & 70

& 33. 4 & 0. 6 & 0. 6 & 28. 0 & 0. 5 & 0. 8 & 40. 4 & 0. 7 & 0. 9 & 1. 2 & 0. 8

& 1. 4 & 1. 1 W & 12 & 66. 4 & 1. 2 & 1. 2 & 55. 3 & 1. 0 & 1. 8 & 48. 6 & 0. 8

& 1. 1 & 1. 2 & 0. 7 & 0. 9 & 0. 6 G & 71 & 44. 8 & 6. 6 & 6. 6 & 32. 4 & 3. 9

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 37

& 4. 7 & 43. 2 & 5. 2 & 5. 6 & 1. 4 & 1. 4 & 1. 3 & 1. 2 X1 & 180 & 47. 5 & 4.

2 & 4. 2 & 28. 8 & 2. 4 & 3. 0 & 35. 2 & 3. 0 & 3. 3 & 1. 7 & 1. 4 & 1. 2 & 1. 1

X2 & 180 & 42. 6 & 7. 4 & 7. 5 & 20. 5 & 3. 5 & 3. 9 & 27. 4 & 4. 6 & 5. 0 & 2.

1 & 1. 9 & 1. 3 & 1. 3 X3 & 180 & 48. 9 & 12. 7 & 12. 8 & 18. 7 & 4. 7 & 5. 2

& 24. 3 & 6. 1 & 6. 7 & 2. 6 & 2. 5 & 1. 3 & 1. 3 midruleextbf{ALL} &

extbf{751} & extbf{44. 7} & extbf{6. 6} & extbf{6. 6} & extbf{25. 1} &

extbf{3. 0} & extbf{3. 5} & extbf{32. 4} & extbf{3. 9} & extbf{4. 3} &

extbf{1. 8} & extbf{1. 9} & extbf{1. 3} & extbf{1. 2}

ottomruleend{tabular}%egin{tablenotes}item [1] A subset of 7 instances

could not be solved by the ACCPM using the default accuracy level, $delta =

10^{-6}$ (4 from class X2 and 3 from class X3). To overcome this we

have used $delta = 10^{-

5}$end{tablenotes}end{threeparttable}label{clspst-table-

average}end{adjustwidth}end{table}In addition to the previous

experiment, we have created a set of more challenging instances. We have

taken 3 instances from cite{TriThoMcC89}, which were used in

cite{degraeve2007} as a comparison set. Additionally, we have selected 8

instances from the sets of larger classes, X2 and X3. This small set of 11

instances (emph{i. e.,} G30, G53, G57, X21117A, X21117B, X21118A,

X21118B, X31117A, X31117B, X31118A, X31118B) has been replicated 5,

10, 15 and 20 times following the same procedure described above.

The summary of our findings is presented in Table ef{clspst-table-

replicated_11}, where column r denotes the factor used to replicate the

selected instances. From the results, we see that for every choice of r, the

PDCGM requires fewer outer iterations and less CPU time on average, when

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 38

compared with the ACCPM and the SCG. Considering the 44 instances

(11 instances and 4 values for r), the PDCGM is $2. 8$ and $2. 6$

times faster than the SCG and the ACCPM, respectively.egin{table}

[H]caption{Average results on 11 modified instances of the CLSPST for the

SCG, PDCGM and ACCPM adding one column per subproblem at a

time.}setlength{abcolsep}{4pt}scriptsizeegin{adjustwidth}{-1in}{-

1in}centeringegin{tabular}{cccccccccccccc}oprule& multicolumn{3}{c}

{extbf{SCG}} & multicolumn{3}{c}{extbf{PDCGM}} & multicolumn{3}{c}

{extbf{ACCPM}} & multicolumn{2}{c}{inyextbf{SCG/PDCGM}} &

multicolumn{2}{c}{inyextbf{ACCPM/PDCGM}}midruleextbf{r} & extbf{ite}

& extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{or(s)} & extbf{tot(s)} &

extbf{ite} & extbf{or(s)} & extbf{tot(s)} & extbf{ite} & extbf{tot(s)} &

extbf{ite} & extbf{tot(s)} midrule5 & 27. 5 & 4. 7 & 4. 7 & 11. 5 & 1. 5 & 1.

6 & 22. 5 & 3. 1 & 3. 2 & 2. 4 & 3. 0 & 2. 0 & 2. 1 10 & 32. 0 & 62. 7 & 62. 7

& 15. 6 & 20. 4 & 21. 0 & 29. 5 & 49. 1 & 49. 5 & 2. 0 & 3. 0 & 1. 9 & 2. 4 15

& 38. 4 & 308. 8 & 308. 8 & 20. 0 & 103. 8 & 106. 2 & 36. 4 & 273. 2 & 274.

3 & 1. 9 & 2. 9 & 1. 8 & 2. 6 20 & 45. 5 & 975. 6 & 975. 8 & 25. 9 & 350. 5 &

358. 4 & 42. 4 & 938. 7 & 941. 0 & 1. 8 & 2. 7 & 1. 6 & 2. 6

midruleextbf{ALL} & extbf{35. 8} & extbf{337. 9} & extbf{338. 0} &

extbf{18. 3} & extbf{119. 0} & extbf{121. 8} & extbf{32. 7} & extbf{316.

0} & extbf{317. 0} & extbf{2. 0} & extbf{2. 8} & extbf{1. 8} & extbf{2. 6}

ottomruleend{tabular}%label{clspst-table-

replicated_11}end{adjustwidth}end{table}%If we consider the average CPU

time per iteration for the CLSPST modified instances, the PDCGM is the most

efficient among the studied strategies, while the SCG and the ACCPM have

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 39

very similar times per iteration. From the evidence gathered so far, one

could infer that for some applications taking optimality and stabilization

strategies as separated objectives may not originate any saving. However, if

one can combine both objectives the resulting method can produce

important savings in terms of CPU time and column generation iterations.

subsection{Performance profiles for large instances}label{subsec:

perf_prof}In order to complement our numerical comparisons, we have

included performance profiles cite{dolanANDmore2002} for each application

considering large instances. In short, performance profiles provide

information about the behaviour of different methods for a given metric

when solving a set of instances. In our case we are interested in two type of

metrics. When comparing the PDCGM against the SCG and the ACCPM, we

are interested in the number of outer iterations (calls to the subproblem(s))

and the total CPU time needed to solve an instance. For a better

understanding of performance profiles, we will briefly describe the

methodology proposed in cite{dolanANDmore2002}. Having the result for a

particular metric (emph{e. g.,} total CPU time or outer iterations) obtained

by using different methods, let us define $mathcal{M}$ and $mathcal{I}$

as the set of methods and instances, respectively. Then, for every $i in

mathcal{I}$ and $m in mathcal{M}$, we define $t_{i, m}$ as the result of

the metric when solving instance i with method m. The baseline for

every instance will be given by the best result obtained by any of the

methods. In our case, and for all metrics considered, this is the minimum of

the values among all methods. Therefore, the performance ratio can be

defined as:egin{equation}r_{i, m} = displaystyle frac{t_{i, m}}

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 40

{minlimits_{k in mathcal{M}}left{t_{i, k} ight}}, forall i in mathcal{I}, forall

m in mathcal{M}. end{equation}Additionally, if we define

$mathcal{S}_m(au) = left{i in mathcal{I}: r_{i, m} leq au ight}$, then the

cumulative distribution function of method m for the performance ratio is$

$ ho_{m}(au) = frac{1}{| mathcal{I}|} | mathcal{S}_{m}(au)|, forall m in

mathcal{M}.$$where $ ho_{m}(au)$ represents the probability that the

result of method m is between a ratio au with respect to the best result

among all methods. Note that this type of analysis can cope with

solver/method failures so it gives a good measure of robustness. Then, in

order to generate the cumulative distribution plots of every method for a set

of instances (performance profiles), we set several values of au (x-axis)

and plot them against the corresponding $ ho_{m}(au)$ (y-axis). The

figures we present in the next section were created with an slightly modified

MATLAB cite{MATLAB} script available at url{http://www. mcs. anl.

gov/~more/cops/}. Having the results for the aforementioned applications in

terms of average and classified by number of columns added per iteration

give us a good idea of the efficiency of the methods. It shows clearly that the

larger the instances, the better the overall performance of the PDCGM. In

order to mitigate the influence of poor performances of some of the

strategies in very specific instances (large CPU times or number of outer

iterations), we also present the performance profile results for all the difficult

instances and all the column strategies. We have selected only instances

which challenge the column generation for every application.

subsubsection{Cutting stock problem}In Figures ef{fig: pp_csp: subfig1} and

ef{fig: pp_csp: subfig2} we have the performance profiles in terms of outer

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 41

iterations and total CPU time, respectively. We have considered instances in

class U and the 14 large instances presented in Table ef{csp-table-

very_large} and all values of k previously considered. These results clearly

complement the discussion in the previous section. It clarifies any doubt and

shows that the PDCGM is the best method to solve large instances for this

class of problems. Independently of the number of columns added per

iteration and instances considered, the PDCGM always requires fewer outer

iterations than the SCG and the ACCPM as shown in Figure ef{fig: pp_csp:

subfig1}. Also, in terms of CPU time the PDCGM is the most efficient

technique for the vast majority of larger instances and when it is not the

best, it does not perform badly (only at a factor less than $1. 5$ from the

best strategy). One can observe that the ACCPM is not very competitive and

that more than $50\\%$ of the instances require at least 6 times more CPU

time to be solved than the best result obtained with either the PDCGM or the

SCG.egin{figure}[H]%egin{adjustwidth}{-0. 5in}{-0.

5in}centeringsubfigure[Outer iterations]{includegraphics[keepaspectratio=

true, clip= true, viewport = 85 105 760 465, scale = 0. 60]

{figures/outerCSP}label{fig: pp_csp: subfig1}

}
subfigure[Total CPU time]{includegraphics[keepaspectratio= true, clip=

true, viewport = 85 105 760 460, scale = 0. 60] {figures/timeCSP}label{fig:

pp_csp: subfig2}

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 42

}
caption{Performance profiles for the CSP with the SCG, PDCGM and ACCPM

(large instances)}label{fig: pp_csp}

%end{adjustwidth}end{figure}subsubsection{Vehicle routing problem with

time windows}For the VRPTW, we have considered instances in classes

C100, R100 and RC100 plus 9 large instances with 200, 400 and

600 customers (see Table ef{vrptw-table-relative-large}).egin{figure}

[H]centeringsubfigure[Outer iterations]{includegraphics[keepaspectratio=

true, clip= true, viewport = 85 105 760 460, scale = 0. 60]

{figures/outerVRPTW}label{fig: pp_vrptw: subfig1}

}
subfigure[Total CPU time]{includegraphics[keepaspectratio= true, clip=

true, viewport = 85 105 760 460, scale = 0. 60]

{figures/timeVRPTW}label{fig: pp_vrptw: subfig2}

}
caption{Performance profiles for the VRPTW with the SCG, PDCGM and

ACCPM (large instances)}label{fig: pp_vrptw}end{figure}In Figures ef{fig:

pp_vrptw: subfig1} and ef{fig: pp_vrptw: subfig2} we present the

performance profiles for outer iterations and total CPU time, respectively

obtained by the three column generation strategies. Similar to the results for

the CSP considering large instances, the PDCGM is the most efficient method

among the three approaches considered. It performs consistently better than

the SCG and ACCPM in more than $90\\%$ of the instances in both

performance measures. subsubsection{Capacitated lot-sizing problem with

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 43

setup times}For the perfomance profiles of the CLSPST, we have considered

instances in classes G, X1, X2 and X3. Additionally, we have included the

replicated instances with r equal to 10, 15 and 20. In Figures

ef{fig: pp_clspst: subfig1} and ef{fig: pp_clspst: subfig2} we have the

performance profiles for outer iterations and total CPU time, respectively.

Again, PDCGM is the strategy that obtains the best results for most of the

selected instances. It is the most efficient strategy in terms of CPU time in

more than $75\\%$ of the cases and when it is not the best, it does not

perform poorly compared to the other two strategies. Differently to the

results with other two applications, namely the CSP and VRPTW, the ACCPM

performs much better than the SCG and it offers the best performance in

terms of CPU time in almost $20\\%$ of the instances. With these additional

comparisons we aim to provide the reader with enough evidence to support

our conclusion that the PDCGM is %consistently the best column generation

strategythe variant with the best overall performance among the ones

considered in this study when large instances in the context of integer

programming are considered.egin{figure}[H]centeringsubfigure[Outer

iterations]{includegraphics[keepaspectratio= true, clip= true, viewport = 85

105 760 460, scale = 0. 60] {figures/outerCLSPST}label{fig: pp_clspst:

subfig1}

}
subfigure[Total CPU time]{includegraphics[keepaspectratio= true, clip=

true, viewport = 85 105 760 460, scale = 0. 60]

{figures/timeCLSPST}label{fig: pp_clspst: subfig2}

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 44

}
caption{Performance profiles for the CLSPST with the SCG, PDCGM and

ACCPM (large instances)}label{fig:

pp_clspst}end{figure}subsection{Additional comments about stabilized

column generation}Although no computational study has been performed

considering an artificially stabilized column generation based on simplex, we

would like to refer to two papers which provide us with some notion on how

much can be gained by stabilizing the applications considered in this thesis.

In cite{BriLemMeuMicPerVan08}, the authors present a comprehensive

computational study comparing the standard column generation (Kelley

method) against the bundle method, a stabilized cutting plane method which

uses quadratic stabilization terms as shown in Section ef{sec: cg:

strategies}. A set of five different applications have been considered in the

computational experiments, including the CSP and the CLSPST (MILS problem

in their paper). Regarding the CSP, the results in that paper indicate that

using the bundle method may slightly reduce the number of column

generation iterations at the cost of worsening the total CPU time by a factor

greater than 3 (see Tables 1 and 2 in cite{BriLemMeuMicPerVan08}).

Furthermore, in the results obtained for the CLSPST, we observe that the

bundle method behaves poorly in terms of the number of outer iterations

and CPU time when compared with the standard column generation (see

Table 12 in cite{BriLemMeuMicPerVan08}). In Rousseau emph{et al.}

cite{Rousseau2007}, the authors propose an interior point column

generation technique in which the dual solutions are convex combinations of

extreme dual points of the RMP that are obtained by randomly modifying the

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 45

dual objective function. To analyse the computational performance of their

approach, they have used the set of large VRPTW instances with 100

customers, namely instances included in classes C100, R100 and RC100.

Only the results of 22 out of 29 instances were presented by the

authors. Their comparison involves the implementations of the standard

column generation as well as a stabilized version called BoxPen technique

cite{duMerle1999}. Since a different subproblem solver, another version of

CPLEX and a different machine have been used in their computational

experiments, it would not be appropriated to make a straightforward

comparison of the figures presented in their tables with those presented in

Tables ef{vrptw-table-average} and ef{vrptw-table-relative-k_columns}.

Hence, we have considered the gains obtained by each approach in relation

to the standard column generation. According to their results, a well-tuned

implementation of the BoxPen stabilization reduces the number of outer

iterations by $16\\%$, on average, while the total difference regarding CPU

time is negligible when compared with the standard column generation. The

interior point stabilization (IPS) proposed by the authors shows a better

performance than the BoxPen stabilization, being $1. 38$ times faster than

the standard column generation technique. For the same set of instances

(22 out of 29), the PDCGM is $2. 03$ times faster than the SCG on

average ($k = 200$). Two final comments with regard to the ACCPM are

needed. Looking at our computational results and considering all the

applications studied in this thesis, it seems that the ACCPM suffers when

multiple columns are added at each iteration of the column generation. As

mentioned in one of the very few papers in the context of column generation

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

 Primal dual column generation method eng... – Paper Example Page 46

and Lagrangian relaxation for integer programming problems using the

ACCPM, the starting point is critical for the success of the algorithm

cite{BelTadVia06}. Initializing the ACCPM with poor columns may originate

unnecessary iterations at the beginning of the column generation, which is

expensive. This may be emphasised by the addition of unnecessary columns

at every iteration making the method converging slowly. A remedy to this

could be to carefully choose the initial point for each instance. However, this

is impractical and out of the scope of this study. Also, in order to guarantee a

good performance of the ACCPM so it can efficiently reoptimize after new

columns are added, the theory requires some safeguards. For instance, if

multiple columns are added in one iteration and the old analytic centre

deeply violates these new constraints in the dual space, theoretically the

ACCPM struggles and no warmstarting is possible cite{goffinvial1999,

goffinvial2000}. As a final remark of this chapter, from our results one can

observe that unlike the SCG, the strategies based on interior point methods,

namely the PDCGM and the ACCPM, spend a non-negligible amount of time

solving the RMPs. This is because reoptimizing interior point methods is not

as straightforward as reoptimizing with simplex-type methods. This issue will

be extensively discussed in the next chapter.

https://assignbuster.com/primal-dual-column-generation-method-english-
language-essay/

	Primal dual column generation method english language essay
	}
	}
	}
	}
	}
	}

