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. . . 576 Conclusion 615Chapter 1Introduction1. 1 IntroductionIn 

Computational Complexity the class NP-complete is a very important 

researcharea in Computer Science, reason being that determining whether 

or notevery problem whose solution can be e_ciently veri_ed by a computer, 

can alsobe quickly solved by a computer. The following problem is referred 

to asthe P versus NP problem, which is one of the principal unsolved 

problemsin Computer Science to date. Also, demonstrating that many 

computationalproblems that occur throughout Computer Science are in the 

complexity classNP-complete, by showing a transformation from a known NP-

complete problem. The main purpose of this dissertation is to study the 

Computational Complexityclass NP-complete and in particular the reduction 

notion. This paperwill focus on 8 decision problems which are known to be in 

the complexity classNP-complete and show their reductions from known NP-

complete problems. For the 8 NP-complete problems I will give the precise 

de_nitions. I will alsogive examples when the decision problem is satis_ed 

and in the case its not. I will start by introducing the Computational 

Complexity classes P, NP andNP-complete. For each of the complexity 

classes, I will begin by giving a briefinsight into the history behind the 

complexity classes. Also, providing precisede_nitions of the complexity class,

referring to known problems that are in theclass and inserting illustrations 

when needed. Subsequently, I will present the precise de_nition of the 8 

problems also takinginto account the di_erent interpretations of the problem.

I will go onto givea brief insight into the history behind the problems. Also, 
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providing examples ofapplications that model these 8 problems and insert 

illustrations when needed. Finally, I will de_ne each of the 8 decision problem

by giving the input, sizeof the problem and output. We will give the history of

discovery of each problem, show where the NP-completeness of the decision 

problem was _rst shown. Firstly we verify that each of the decision problems 

can be e_ciently veri_ed byproviding examples. We then derive rigorous 

proofs for each reduction, provingthat the decision problem is in the 

complexity class NP-complete. 61. 2 DiscoveryIn 1971, Stephen Cook a 

Canadian Computer Scientist introduced the theoryof NP-completeness, in a 

paper entitled " The Complexity of Theorem ProvingProcedures" [7]. Within 

this paper Stephen Cook introduced importantconcepts regarding NP-

completeness. Firstly, he con_rmed the class NP, were the abbreviation of NP

refers tonondeterministic polynomial time. The decision problems in the 

class NP canbe solved in polynomial time by a nondeterministic computer. 

Also, he stressed the importance of polynomial time reduction, such 

thatevery problem in the decision class NP is reducible to a given decision 

problemC in polynomial time. If it's the case, that we have a polynomial time 

reductionfrom one NP problem to another given NP problem. This con_rms 

thatany polynomial time algorithm for the second problem can be converted 

into apolynomial time algorithm for the _rst problem. Thirdly, he introduced 

the _rst decision problem in the class NP, the Satis-_ability problem which is 

more often than not referred to as the SAT problem. This con_rms that a 

given decision problem c in NP, can be polynomially reducedto the 

Satis_ability problem. If the satis_ability problem can be solvedwith a 

polynomial time algorithm, then so can every problem in NP, and if 
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anyproblem is in NP-hard, then the satis_ability problem also must be hard. 

Finally, Stephen Cook proved that a problem in the decision class NP 

mayalso be in the the decision class NP-hard such that, a given decision 

problem c isNP-hard if and only if there is a known problem in NP-complete i. 

e the problemthat is polynomial time reducible to c. Subsequently, in 1972 

Richard Karp an American Computer Scientist developedon the ground work 

of Stephen Cook by using the Boolean Satis_abilityproblem to prove several 

other problems were in the class NP-complete by showingthere is a 

polynomial-time reduction from the Boolean Satis_ability problemto each of 

the Karp's 21 NP-complete problems in his paper, " Reducibility 

AmongCombinatorial Problem" [19]. The development of Richard Karp's 

21NP-complete problems steered a wide-ranging interest in the concept of 

NPcompleteness. 7Chapter 2Preliminaries2. 1 Graph theoryDe_nition 2. 1. 1 

A graph is a pair (V; E), where V is the set of vertices, andE is the set of 

edges, where an edge is a 2-element subset of V . Often a graphis denoted 

by G = (V; E), and we may use V (G) := V and E(G) := E. [14]Example 2. 1. 2 

Some simple examples for graphs, using mathematical nota-tion, and 

additionally drawing them XXX1. A graph with one vertex: (f1g; ;). Note that 

a graph with at most onevertex can not have an edge. 2. There are exactly 

two possible graphs G with V (G) = f1; 2g, namely withE(G) = ; or E(G) = ff1; 

2gg. 3. There are exactly three possible graphs G with V(G) = f1, 2, 3g, 

namelywith E(G) = ; or E(G) = ff1, 2gg or E(G) = ff1, 2g, f2, 3g, f3, 1ggFigure

2. 1: Undirected graphs. (a) A undirected graph G = (V, E), where V = f; g 

and E = f; g. (b) An undirected graph G = (V, E), where V = f1g and E= f; g. 

(c) An undirected graph G = (V, E), where V = f1, 2g and E = f(1, 2)g. 
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De_nition 2. 1. 3 A bipartite graph is an undirected graph G = (V; E), inwhich 

V can be partitioned into two sets V1 and V2 such that (u, v) 2 E 

implieseither u 2 V1 and v 2 V2 or u 2 V2 and v 2 V1. That is, all edges go 

betweenthe two sets V1 and V2 [25]. 8Example 2. 1. 4 Some simple 

examples for bipartite graphs, using mathematicalnotation, and additionally 

drawing them XXX1. The bipartite graph G = (5, 6), where V1 = f1, 2, 3g, V2 

= f4, 5g and E = f(1, 4),(1, 5),(2, 4),(2, 5),(3, 4),(3, 5)g2. The bipartite graph 

G = (9, 8), where V1 = f1, 2, 3, 4, 5g, V2 = f6, 7, 8, 9gand E = f(1, 6),(2, 6),

(2, 7),(3, 8),(3, 9),(4, 7),(5, 6),(5, 9)gFigure 2. 2: Undirected graphs. (a) A 

undirected graph G = (V, E), where V1= f1, 2, 3g and V2 = f4, 5g and E = 

f(1, 4),(1, 5),(2, 4),(2, 5),(3, 4),(3, 5)g. (b) Anunidirected graph G = (V, E), 

where V1 = f1, 2, 3, 4, 5g, V2 = f6, 7, 8, 9g and E = f(1, 6),(2, 6),(2, 7),(3, 8),

(3, 9),(4, 7),(5, 6),(5, 9)g. 2. 2 SetsDe_nition 2. 2. 1 A Set, is a collection of 

distinguishable objects, called itselements. If object x is a element of set S, 

we write x 2 S. If x 62 S. We expressa set by listing all the elements inside 

braces. Example 2. 2. 2 Some simple examples for sets, using mathematical 

notations, and additionally drawing them: 1. The set S = f20, 95, 106, 48, 52,

7g. The set S contains the integers 7, 20, 48, 52, 95and 106. 2. The set S = 

f32, 77, 21, 54, 21, 77g. The set S contains the integers 32, 77, 21, 54, 

21and 77. 3. The set S = f1, 2, 3, 4, 5, 6, 7, 8, 9g. The set S contains the 

integers 1, 2, 3, 4, 5, 6, 7, 8and 9. 9Figure 2. 3: Finite sets. (a) The _nite set 

S = f20, 7, 48, 52, 106, 95g. (b) The _niteset S = f37, 106, 52, 95, 48, 7g. (c) 

The _nite set S = f1, 9, 8, 3, 6, 7, 2, 5, 4g. Example 2. 2. 3 Some special 

notations for frequently encountered sets, usingmathematical notations: 1. ; 

expresses the empty set, which is the set containing no elements. 2. Z 
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expresses the integer set, which is, the set f...,-2,-1, 0, 1, 2,... g3. R 

expresses the real number set, which is, the set4. N expresses the natural 

number set, which is, the set f0, 1, 2,... g. De_nition 2. 2. 4 A subset, is a 

collection of distinguishable elements, suchthat, all the elements of the set A

are in the set B, if x 2 A implies x 2 B. Weexpress a A is a subset of B by 

writing A _ B. Example 2. 2. 5 Some simple examples for subsets, using 

mathematical nota-tions, and additionally drawing them: 1. The _nite sets S 

= f1, 3, 40, 20, 3, 1g and S' = f40, 20, 3g show that S' _ S2. The _nite sets S 

= f7, 2, 7, 9, 1g and S' = f9, 1g show that S' _ S3. The _nite sets S = f2, 3, 8, 

14, 11g and S' = f14, 11g show that S' _ S10Figure 2. 4: Finite sets. (a) The 

_nite set S' = f40, 20, 3g is a subset of theset S = f1, 3, 40, 20, 3, 1g. (b) The

_nite set S' = f9, 1g is a subset of the setS = f1, 7, 9, 77, 2, 7g. (c) The _nite 

set S' = f11, 14g is a subset of the set S = f2, 14, 8, 3, 11g2. 3 

LogicDe_nition 2. 3. 1 In Boolean Logic, a formula is in Conjunctive Normal 

Form(CNF) if it is of the form CiV 

... 
VCn where each Ci is a disjunction of theliterals. The formula Ci are also 

called (disjunctive) clauses. Example 2. 3. 2 Some simple examples for CNF 

Boolean Logic, using mathe-matical notation, and additionally drawing them:

1. The following formula is a disjunction of two literals AWB. 2. The following 

formula is a conjunction of two clauses AVB. 3. The following formula is a 

conjunction of two clauses where each clausehas a disjunction of literals 

(AWB)V(CWB). De_nition 2. 3. 3 A Boolean Logic formula is said to be in n-

CNF, where n isa natural number, if it is in CNF and every clause contains at 

most n literals. 11Figure 2. 5: Boolean Logic formulas. (a) The truth table for 
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the ConjunctiveNormal form clause (AWB). (b) The truth table for the 

conjunction of twoclauses AVB. (c) The truth table for the Conjunctive Normal

formula, whereeach clause has two distinct literals (AWB)V(CVB). This shows 

that the third CNF example above is in 2-CNFDe_nition 2. 3. 4 In Boolean 

Logic, a formula is in Disjunctive Normal Form(DNF) if it is of the form CiW 

... 
WCn where each Ci is conjunction of literals. The formula Ci are also called 

(conjunction) clauses. Example 2. 3. 5 Some simple examples for DNF 

Boolean Logic, using mathe-matical notations, and additionally drawing 

them: 1. The following formula is a conjunction of two literals: AVB2. The 

following formula is a disjunction of two clauses: AWB3. The following 

formula is a disjunction of two clauses where each clausehas a conjunction of

literals: (AVB)W(CVB)12Figure 2. 6: Boolean Logic formulas. (a) The truth 

table for the DisjunctiveNormal form clause (AVB). (b) The truth table for the 

disjuntion of twoclauses AVB. (c) The truth table for the Disjunctive Normal 

formula, whereeach clause has two distinct literals (AVB)W(CVB). De_nition 

2. 3. 6 The DeMorgan's Law1. :(PWQ) ! (: P)W(: Q)2. :(PVQ) ! (: P)V(: Q)In 

other words, the DeMorgan's Laws are transformation rules, such that 

thenegation of a conjunction is the disjunction of the negations. Als, the 

negationof a disjunction is the conjunction of the negations. 2. 4 Polynomial-

timeDe_nition 2. 4. 1 In Computational Time Complexity, a given algorithm is

aPolynomial Time algorithm if on inputs of size n, their worst-case running 

timeis O(nc). Example 2. 4. 2 Some simple examples of Polynomial Time 

algorithms, usingmathematical notaion: 1. DIV(x, y) = (q, r) such that x = y. r

+ r wherere r < y. The remainder ris also denoted x mod y. 2. GCD is de_ned
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as the largest z such that z/x and z/y. 3. EXP(x, y) = xy. 132. 5 

FunctionsDe_nition 2. 5. 1 For any real number x, we denote the greatest 

integer lessthan or equal to x by bxc " the oor of x". De_nition 2. 5. 2 For any

real number x, we denote the least integer greaterthan or equal to x by dxe "

the ceiling of x". Example 2. 5. 3 Some simple examples using the oor and 

ceiling function: 1. x = 2. 4: bxc = 2 and dxe = 32. x = 2. 9: bxc = 2 and dxe

= 33. x = 3: bx/2c = 1 and dx/2e = 24. x = 7: bx/2c = 3 and dx/2e = 42. 6 

MatricesDe_nition 2. 6. 1 In mathematics, a matrix is a rectangular array of 

number, symbols and expressions, which are arranged in rows and columns. 

Example 2. 6. 2 Some simple examples using matrices: 1. x = 2. 4: bxc = 2 

and dxe = 32. x = 2. 9: bxc = 2 and dxe = 33. x = 3: bx/2c = 1 and dx/2e = 

24. x = 7: bx/2c = 3 and dx/2e = 414Chapter 3P, NP and NP-Complete3. 1 

OverviewIn chapter 3, we present the computational complexity classes P, 

NP and NPcomplete. I will begin the chapter by introducing the complexity 

class P, whichis the set of decision problem which can be solved e_ciently. I 

begin this sectionby giving an insight into the history behind the notion P. I 

will then go ontopresent the formal de_nition of the Complexity class P and 

provide examplesof computational problems that are in the complexity class 

P. Subsequently, I will go onto introduce the complexity class NP, which is 

theset of decision problems whose solution can be veri_ed e_ciently by a 

computer. I also begin this section by giving an insight into the history 

behind the notionNP. We go onto to present the formal de_nition of the 

complexity class NPby showing the two conditions that must hold if the 

decision problem has ae_ciently veri_able proof system. I will also provide 

some examples of decisionproblems that are in the complexity class NP. 
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Finally, I will conclude this chapter by introducing the complexity classNP-

complete, which is the set of decision problems whose solution cannot 

besolved e_ciently by a computer. In this section we present the theory of 

NPcompleteness, which is based on the notion of a polynomial time 

transformation. We present the formal de_nition of the theory of NP-

completeness, by showingthe steps an NP problem has to take in order to to 

be in the complexity classNP-complete. I will then go onto provide the formal

de_nition of a polynomialtime reduction and give examples of well known 

reductions of NP-completeproblems. 3. 2 P3. 2. 1 DiscoveryIn 1964, Alan 

Cobham an American mathematician introduced the set of problemswhich 

are e_ciently solvable in polynomial time, in his paper entitled " Theintrinsic 

computational di_culty of functions" [5]. He proved that many of 

themathematical functions can be proved in polynomial time. 

15Subsequently, in 1965, Jack Edmond a Canadian mathematician proved 

themaximum matching problem has a polynomial time algorithm named the 

Blossomalgorithm, in his paper entitled " Paths, trees, and owers" [9]. 

De_nition 3. 2. 1 A decision problem S _ f0, 1g_ is e_ciently solvable if 

thereexists a polynomial-time algorithm A such that, for every x, it holds that

A(x)= 1 if and only if x 2 S [24]. In other words, a decision problem S is in the

complexity class P if thereexists a polynomial time algorithm which solves S. 

Example 3. 2. 2 Some examples of decision problems that are in 

complexityclass P: 1. Primality - Given an integer n > 0, determining whether

or not n is primewas a commonly probed question in mathematics. Since, 

Carl Gauss, aGerman mathematician challenged mathematicians to solve 

primality ef-_ciently. The achievement of _nding an e_cient algorithm for 
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primalitywas well presented by Agrwal and Mainindra in the paper entitled " 

Primesis in P" [1]. 2. GCD - Given two integers a and b (where at least one of 

which is non-zero), dertmine the largest integer z which divides a and b. The 

mostfamous algorithm for solving the Greatest Common Divisor is the 

EuclidAlgorithm which is shown in [20]. 3. Maximum matching - Given a 

graph G = (V, E), a Maximum Match m inG is a set of pairwise non-adjacent 

edges, such that no two edges share acommon vertex. Jack R. Edmonds a 

Canadian mathematician e_ecientlysolved the maximum match problem, in 

a paper entitled " Paths, tree andowers" [9]. 4. Eulerian Cycle - Given a 

graph G =(V, E), a Eulerian Cycle c in G isa closed cycle that spans through 

all the edges of G. The Eulerian cycleof given graph can be solved e_ciently 

by using the Fleury's Algorithm. Wilson and Robin [28] describe the Fleury's 

algorithm well. 5. Connectivity - Given a grah G = (V, E), a given graph G is 

connectedif there is a path between every pair of vertices. The 

connectedness of agiven graph G can be solved e_ciently by either using 

depth-_rst searchor breadth-_rst search algorithms. Targan and Hopcroft [16]

describe thealgorithm well for determining whether or not a graph is 

connected. 16Figure 3. 1: Given an undirected graph G. (a) A graph G = (V, 

E), where V = f1, 2, 3, 4g and E = f(1, 2),(2, 3),(3, 4),(4, 2)g. (b) A graph G' =

(V, E), where V= f1, 2, 3, 4g and E = f(1, 2),(2, 3),(3, 4),(4, 2)g, such that f(1,

2)g and f(3, 4)g donot share a common vertex. 3. 3 NP3. 3. 1 DiscoveryIn 

1971, Stephen Cook a Canadian Computer Scientist introduced the theoryof 

NP-completeness in his paper " The Complexity of Theorem Proving" [7], 

which provided the _rst NP-completeness proof. Stephen cook proved the 

_rstproblem in the class NP, the Satis_ability problem, which is more often 
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thatnot referred to as the SAT problem and also proved the same for 3SAT. 

Subsequently, in 1972 Richard Karp an American Computer Scientist 

presentedhis paper " Reducibility among Combinatorial Problems" [19]. 

StephenKarp's paper introduced 19 more problems that were NP-complete, 

which includethe Hamiltonian Circuit, Clique and Vertex cover. It also 

provided methodsto prove NP-completeness using transformations from 

problems known tobe NP-complete. In 1979, Michael Garey and David 

Johnson published the textbook entitled" Computers and Intractability: A 

Guide to the Theory of NP-completeness"[14]. This was the _rst book on the 

theory of NP-completeness. Garey andJohnson provide countless number of 

problems that are NP-complete and providethe original sources where its NP-

completeness was shown. De_nition 3. 3. 1 A decision problem S _ f0, 1g* 

has an e_eciently veri_ableproof system if there exists a polynomial p and a 

polynomial-time (veri_cation)algorithm V such that the following two 

conditions hold: 1. Completeness: for every x 2 S, there exists y of length at 

most p(jxj) suchthat V(x, y) = 1. 2. Soundness: For every x = 2 S and every 

y, it holds that V(x, y) = 0. Thus, x 2 S if and only if there exixts y of length at

most p(jxj) such that V(x, y)= 1. In such a case, we say that S has an NP-

proof system, and refer to V as itsveri_cation procedure (or as the proof 

system itself ). We denote NP theclass of decision problems that have 

e_ciently veri_able proof systems [24]. 17In other words, condition one refers

to true assertions that have valid proofs. Assertions refer to elements in S, 

from this we understand for every x belongingto S exists a string y such that 

V(x, y) = 1 (YES). v accepts y as a valid prooffor the elements of x in S. 

Conversely, condition two refers to false assertions that have not valid 
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proofs, that is for every x not belonging to the set S and every string y it 

holds thatV(x, y) = 0 (NO) v rejects y as a proof for the elements of x in S. 

Example 3. 3. 2 Some examples of decision problems that fall into the class 

NP: 1. Set Cover - Consider a collection C of subsets of a _nite set S and a 

pos-itive integer K _ jCj. Does C contain a cover of S of size K. Consider a _-

nite set S = f5, 6, 7, 8, 9g and set of sets C = ff5, 6, 7, 8, 9g, f6, 8g, f7, 8g, 

f8, 9ggand K = 2. V((S, C), 2) where S is the _nite set and C is the set of 

setsn, whose union is S, Thus for K = 2 we have ff5, 6, 7gf8, 9gg is a coverfor

S. 2. Directed Hamiltonian Circuit - Consider a directed graph G (recall De_-

nition 5. 4. 1). Does G contain a directed Hamiltonian circuit. A directedgraph

G = (V, E) = f1, 2, 3, 4g and E = f(1, 2),(2, 5),(2, 4),(2, 2),(5, 4),(4, 5),(4, 1)g. 

V(G, f1, 2, 3, 4, 1g) we _nd we can derive a Directed Hamiltonian cycle 

fromthe given graph G. Figure 3. 2: (a) The truth table for the clause 

(xWyWz) shows that for theinstance where fx = 1, y = 2 and z = 1g 

evaluates to true. (b) The graph G= (V, E), where V = f1, 2, 3, 4g and E = 

f(3, 2),(2, 4),(3, 4),(4, 1),(1, 3)g shows thatfor the instance f3, 2, 4, 1, 3g 

shows we have a cycle for this instance 

. 
The following de_nition of NP shows that any problem that is in P is alsoin NP.

Since if a decision problem is in the decision class P, it indicates that wecan 

solve it in polynomial time without even being given a certi_cate. 183. 4 NP-

completeDe_nition 3. 4. 1 The process of devising an NP-completeness proof 

for a de-cision problem L will consist of the following four steps: 1. showing 

that L is in NP, 2. selecting a known NP-complete problem L', 3. constructing 

a transformation f from L' to L, and4. proving that f is a (polynomial) 
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transformation [14]. In other words, a decision problem L is said to be in the 

class NP-completeif there is a known NP-complete that can be reduced to the

decision problem Lusing a polynomial-time algorithm. Example 3. 4. 2 Some 

examples of decision problems that fall into the classNP-complete: 1. Vertex 

Cover - Given a graph G = (V, E) and a positive integer K _ jVj -Is there a 

vertex cover of size K for G, that is, a subset V' _ V such thatjV'j _ K and, for 

each edge fu, vg 2 E, at least one of u and v belongs toV'. 2. Clique - Given a 

graph G = (V, E) and a positive integer J _ jVj - DoesG contain a clique of size 

J, that is, a subset V' _ V such that jV'j _ Jand every two vertices in V' are 

joined by an edge in E. Figure 3. 3: Undirected graphs. (a) A undirected 

graph G = (V, E), whereV = f1, 2, 3, 4, 5, 6, 7g and E = f(7, 1),(1, 2),(2, 3),(2,

6),(3, 6),(3, 5),(6, 5),(3, 4)g wehave a vertex cover V' = f1, 6, 3g such that all

the edges in G are covered.(b) A undirected graph G = (V, E), where V = f1, 

2, 3, 4, 5, 6g and E = f(1, 2),(2, 3),(3, 4),(4, 5),(3, 5),(5, 6),(6, 2)g we have a 

clique V' = f3, 4, 5g such thateach pair of vertices is connected by an edge. 

19De_nition 3. 4. 3 We say that a decision problem L1 is polynomial-time re-

ducible to a problem L2, written L1 _p L2, if there exits a polynomial-

timecomputable function f : f0, 1g* ! f0, 1g* such that for all x 2 f0, 1g*, x 2 

L1 ifand only if f(x) 2 L1 [24]. In other words, the general notion of a 

polynomial-time reduction is, givena decision problem L it can be reduced to 

a problem L' if it's the case that, aninstance of L can be transformed using a 

polynomial-time to an instance of L', in which the transformation also gives a

solution to the instance of L. Example 3. 4. 4 Some examples of decision 

problems that have been reduced toother decision problems: 1. Clique _p 

Vertex-cover2. Vertex Cover _p Hamiltonian-cycle3. 3-SAT _p CliqueFigure 3. 
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4: Undirected graphs. (a) A undirected graph G = (V, E), where V = fu, v, z, 

w, y, xg and E = f(z, u),(u, v),(v, x),(x, y),(y, u),(y, v),(y, w),(u, x),(z, x),(z, 

w)ghas the clique V' = fx, u, v, yg. (b The graph G' is constructed by a 

polynomialtime reduction algorithm, which has a Vertex Cover V - V' = fz, 

wg. (c) Thegraph G with a clique is constructed from the 3-CNF formulaH= 

(x1WW : x2: x3)V(: x1Wx2Wx3)V(x1Wx2Wx3) using a polynomual 

reuctionalgorithm. Lemma 3. 4. 5 If L1 _p L2 then L2 2 P implies L1 2 P. Proof

Let A2 be a polynomial-time algorithm that decides L2, and let F bea 

polynomial-time reduction algorithm that computes the reduction function f. 

We shall construct a polynomial time algorithm A1 that decides L1 [25]. 

20Figure 3. 5: From the diagram we see that F is reduction algorithm that 

computesthe reduction f from L1 to L2 in polynomial time. A2 is a 

polynomial-timealgorithm that decides L2. Image from [30]. 21Chapter 4The 

8 basic NP-completeproblems4. 1 OverviewIn chapter 4, we present 8 basic 

NP-complete by providing precise de_nitions. We also take an insight into the

history behind all 8 problems. Finally, we goonto provide examples how 

these problems are modelled in real-time applications. 4. 2 Graph 

ColouringDe_nition 4. 2. 1 Consider a graph G (recall De_nition 2. 1. 1). A 

colouringof G with colour-set C is a map f : V (G) ! C such that for each fu; vg 

2 E(G)we have f(u) 6= f(v). Such a colouring is called a k-colouring for some 

integerk _ 0 if jCj _ k. The default colour-set of a k-colouring is f1; : : : ; kg. In 

other words, a graph colouring uses a colour-set C, and assigns to 

everyvertex a colour", that is, an element of C, such that adjacent vertices 

getdi_erent colours. There are many di_erent interpretations of the graph 

colouring problem. A possible interpretation would be, edge colouring which 
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assigns a colour toevery edge in the graph G, such that no two adjacent 

edges share the samecolour. Another possible interpretation would be, 

region colouring whichassigns a colour to each region in the graph G, such 

that no two regions thatshare the same boundary have the same colour. The

graph colouring problem originates from the problem of colouring 

thecountries of a map such that no two countries that have a common 

border receivethe same colour. It is possible to transform a map to a planar 

graph G. Suchthat, every country gets a point in the plane and connect each 

pair of pointsthat match the countries with a common border by a curve. 

Then we determinewhether or not every planar can be coloured with 4 

colours. 22Figure 4. 1: image from [29]. Example 4. 2. 2 Here are some 

examples of applications that model the graphcolouring problem: 1. 

Scheduling - Scheduling an exam timetable can be scheduled in any order, 

but pairs of exams may cause major problem if they are assigned to 

thesame time slot. The following graph G would contain a vertex for 

everyexam and an edge for every conicting pair of exams. 2. Register 

allocation - Each colour represents an available register. Thefollowing graph 

G would contain a vertex for each variable if its the casethat variable a and b

are live at the same point they cannot be assigned tothe same register. We 

add an edge (a, b) to the graph. Figure 4. 2: The diagram shows the three 

exams History, Maths and P. E whichcoincide at the same time on the 

timetable. English and P. E obviously don'tcoincide with any other subject4. 3

CliqueDe_nition 4. 3. 1 Consider a graph G (recall De_nition 2. 1. 1). A clique 

of Gis a subset V' _ V of vertices such that every two vertices are connected 

by anedge in E. 23In other words, a clique determines a complete sub-graph 
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of G, that is, asubset S of vertices such that every two vertices in S are 

connected by an edgein G. There are many di_erent interpretations of the 

clique problem. A possibleinterpretation would be, the maximum clique in a 

given graph G, which isthe sub-graph with the largest possible number of 

vertices. Another possibleinterpretation would be, the maximal clique, which 

refers to a sub-graph inwhich no more vertices can be added. Figure 4. 3: A 

undirected graph G = (V, E), where V = f1, 2, 3, 4, 5, 6g and E= f(1, 2),(2, 3),

(3, 4),(3, 5),(5, 6),(6, 2),(6, 1)g with a maximum clique V' = f1, 2, 3gand four 

maximal cliques = f(2, 3),(3, 4),(3, 5),(5, 6)gThe clique problem started from 

sociology and psychology as complete cliquewere modelled in terms of social

cliques, for instance groups of people that havesome sort of relationship with

one another. Example 4. 3. 2 Here is an example of an application that 

models the cliqueproblem: 1. Social-networks - The maximum clique problem

is modelled in social -networks, where the vertices of G would represent 

people and the edgeswould represent people who are mutual friends. 

24Figure 4. 4: In the example above we see that the clique of size 3 (such 

that the3 people in the diagram know every other in the clique). The three 

people onthe outside don't know anyone else in the group. 4. 4 Vertex 

CoverDe_nition 4. 4. 1 Consider a graph G (recall De_nition 2. 1. 1). A vertex 

coverof G is a subset V' _ such that if (u, v) 2 E, then u 2 V' or v 2 V' (or 

both). That is, each vertex " covers" its incident edges, and a vertex cover 

for G is aset of vertices that covers all the edges in E. There is an extension 

of the vertex cover problem which is referred to as theminimum vertex 

cover, which determines the minimum number of verticesthat include all the 

edges in a given graph G. The vertex cover has the followingproperties that, 
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a given graph G is a vertex cover if and only if its complementis an 

independent set. Also, the vertex cover and the maximum independentset is 

equal to the jVj. Figure 4. 5: j25Example 4. 4. 2 Here are some simple 

applications that model Vertex Cover: 1. Computer Network Security - The 

vertex cover problem has been used inComputer Science to protect 

computer networks from virus attacks. Thiswas well presented by Eric Filiol 

[10]. The aim is to _nd a minimum vertexcover, where the vertices are the 

servers and the edges are the connectionsbetween servers. 4. 5 Hamiltonian

CircuitDe_nition 4. 5. 1 Consider a graph G 2. 1. 1). A Hamiltonian cycle of G 

is an2 E and fvi, vi+1g 2 E for all i, 1 6 i < n. The Hamiltonian cycle problem 

involves the process of determining whetheror not a given graph G has a 

edge edge between each pair of consecutive verticesand between the _rst 

and last vertex. The Hamiltonian cycle problem has thefollowing properties, 

suppose we have a Hamiltonian cycle H for a given graphG, each vertex in 

the cycle has precisely two incident edges, one entering thevertex and one 

leaving. Also, the only Hamiltonian cycle in G is H. Figure 4. 6: jjIn the 1950s,

Sir William Hamiltonian a Irish mathematician introducedhis Icosian game at 

a meeting in Dublin in the late 1950s. The game was to26use a regular 

dodecahedron whose twenty vertices labelled with names of cities. The aim 

was to travel around the dodecahedron by _nding a cycle that passesthrough

every city exactly once. Example 4. 5. 2 Here are some simple applications 

that model Hamilto-nian cycles: A Business man - A business traveller leaves 

every morning from his homewhich is represented by a vertex 1 and needs 

to visit a number of his clients, which is represented by v2,.., v11 and the 

edges being all the possible routes thebusinessman can take before 
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returning to his home. How would the businessmanminimise the total 

distance he travels on his visits?? here we are looking for theHamiltonian 

cycle for the minimum possible length. 4. 6 Subset-sumDe_nition 4. 6. 1 

Given a _nite set S (recall De_nition 2. 2. 1). The subset-sumproblem is a pair

(S, t) where S = fx1, x2, xng is a set of positive intgers and t isa postive 

integer, we ask whether there is a subset S' _ whose elements sum tot. 

Example 4. 6. 2 He are some applications that use the Subset problem: 1. 

knapsack - For the knapsack problem we use di_erent variations of a _-nite 

number of variants to _nd the best possible outcome to a particularsituation, 

a simple example of this would be as follows given the set S= f20, 30, 10, 2, 

5, 25, 41, 3, 15, 3, 1g what is the best possible way of getting avalue t = 40 

speci_c to the constraint. 4. 7 3-SATDe_nition 4. 7. 1 Consider a conjunctive 

normal form formulaH(recall Def-inition 2. 3. 1). A 3-SAT formula consists of 

a collection C = fc1, c2,..., cmg, where each clause has 3 distinct literals, Ci 

= li1Wli2Wli3 on a _nite set U ofvariables. Is there a truth assignment for U 

that satis_es all the clauses in C. The 3-CNF decision problem is the process 

of determining that there existsan assignment, which satis_es a Boolean 

Logic formula which is in Conjunctive27Normal Form and has exactly 3 

distinct literals in each clause. The 3-CNFproblem wants to establish that the 

given formula is satis_able such that theformula to TRUE for a given 

instance. 4. 8 SudokuDe_nition 4. 8. 1 Consider a grid G. A Sudoku S = n2 * 

n2 grid, which isdivided into n * n sub-grids, such that, each row, column and

n * n sub-grid haseach of the integers from 1 through n2 exactly once. The 

Sudoku problem involves the process of _lling in a given n2 x n2 gridS, such 

that every row, every column and n x n subgrid has each number atmost 
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once. The Sudoku puzzle game is often represented by a 32 x 32 grid 

whichconsists of 3 x 3 subgrids, where somes of the boxes are _lled with 

numbers from1 through to 9 and there are also blanks that need to be _lled, 

such that all theconstraints of Sudoku are adhered to. The Sudoku problem 

has the followingtwo properties, that Sudoku problems have unique solutions

and that Sudokuproblems can only be solved with only reasoning. The 

Sudoku puzzle game is a very well known puzzle game that has 

achievedinternational popularity in recent years. The Sudoku puzzle game 

was introducedin Japan in the mid 1980's by Nikoli in the paper " Monthly 

Nikolist". The Sudoku puzzle game appeared on British shores in November 

of 2004 whenit appeared on the British newspaper, The Times. 4. 9 Latin 

squareDe_nition 4. 9. 1 Consider a grid G. A Latin Square L = n * n grid, 

suchthat each row and column has each of the integers from 1 through n 

exactly once. The Latin square problem involves the process of _lling in a 

given n x n gridL, such that every row and every column has each number at

most once. TheLatin square puzzle is often partially completed, there are 

also blanks that needto be _lled in, such that all the constraints of Sudoku 

are adhered to. In 1779, Leonhard Euler a Swiss Mathematician introduced 

the systematicdevelopment of Latin square, when he posed " The problem of

the 36 o_cers". The problem was to arrange 36 o_cers, each having one of 

six di_erent regiments, in a 6 x 6 square, so that each row and each column 

captured one o_cerof each rank and just one from each regiment. 

Subsequently, in the 20th century Arthur Cayley a Canadian 

Mathematiciandeveloped on the ground work of Leonhard Euler by showing 

that the multiplicationtable of a group is an appropriately bordered special 

https://assignbuster.com/reductions-between-np-complete-biology-essay/



 Reductions between np complete biology e... – Paper Example Page 22

Latin square. Example 4. 9. 2 Here are some examples of applications that 

model Latin squares: 1. Sudoku - The Sudoku puzzle game that grown 

considerably in popularity inrecent years is based on Latin squares, such that

each row and column haseach of the integers from 1 through to n exactly 

onc. The only additionalconstraint is that the n x n subgrid of a n2 x n2 

contains each of thenumbers from 1 through to n2 at most once. 282. 

KenKen - The KenKen puzzle that has also grown in popularity in recentyears

is also based on Latin squares, such that each row and column haseach of 

the integers from 1 through to n exactly once. The only additionalconstraint 

is that, each bold-outlined group of boxes is a grouping that con-tains 

integers which achieve the output result using addition, subtraction, 

multiplication and division. 29Chapter 5De_nition Of 8 Problems5. 1 

OverviewIn chapter 9, for every of the 8 problems, we begin by giving the 

original sourcewhere its NP-completeness was shown. We present 8 basic 

NP-complete decisionproblems by precisely de_ning what the decision 

problem is. This will bepresented by giving the input of the given decision 

problem, the output of thedecision problem and the size of the problem. 5. 2 

Graph Colouring5. 2. 1 DiscoveryThe K-Colourability was proved to be in the 

complexity class NP-complete inRichard Karp's paper " Reducibility among 

Combinatorial problems" [19]. Itwas shown that, when K = 2 it can be solved

in polynomial time, but remainsNP-complete for all _xed K _ 3. Karp used the 

3SAT to be a known NPcompleteproblem and proved a polynomial-time 

reduction to K-Colourabilityfrom 3SAT. De_nition 5. 2. 1 Consider a graph G 

(recall De_nition 2. 1. 1) and a positiveinteger K _ jVj. If G is K-colourable 

then there exists a function f: V ! f1, 2,..., Kg such that f(u) 6= f(v) whenever 
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fu, vg 2 E. In other words, the graph colouring decision problem inputs a 

graph G anda positive integer K, and outputs a YES if G admits a proper 

vertex colouringwith K colours, NO otherwise. Example 5. 2. 2 Some simple 

examples for graph colourings and graph-non-colourings [31]1. The Graph 

(2, 1) is 2 colourable. 2. The Graph (3, 3) is 3 colourable. 3. The Graph (4, 6) 

is 4 colourable. 4. The Graph (3, 3) is not 2 colourable. 305. The Graph (4, 6) 

is not 3 colourable. There are two fundamental steps with the graph 

colouring process. The _rstis the decision process which we input a graph G 

with n vertices and choose aninteger K where the graph colouring problem 

decision in yes. The example ofthe _rst case where the decision would be NP-

complete would be the 3 colouringas shown above. The output of the 

decision would be whether or not the graph G admits aproper vertex 

colouring with K colours. There is also a special case where agraph is 2 

colourable and can be be done in P (Polynomial-time) and this iswere the 

particular graph that we're colouring is bipartite which is a particulargraph 

whose vertices can be divided into two disjoint sets were every edge 

thatconnects a vertex in U to one in V. De_nition 5. 2. 3 The chromatic 

number of a graph G, denoted by _(G), isthe smallest integer k _ 0 such that 

G has a k-colouring. Example 5. 2. 4 The three most trivial examples: 1. 

_((;; ;)) = 0; in general we have _(G) = 0 if and only V (G) = ;. 2. _((f1g; ;)) = 

1; in general we have _(G) = 1 if and only if E(G) = ; andV (G) 6= ;. 3. _((f2g; 

f1g)) = 2; in general we have _(G) = 2 if and only if E(G) = 1and V(G) = 2. 

31In other words, The chromatic number refers to the smallest number 

ofcolours needed to colour a graph G is called the chromatic number and is 

oftendenoted by _(G). With the optimisation process we will have an input of 
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agraph G with n vertices. We will _rstly have a look at the simplest form 

whichis not bipartite. We have looked at this previously which is the triangle 

K3. Example 5. 2. 5 Some more Chromatic number examples: 1. _((f3g; f3g)) 

= 3; in general we have _(G) = 3 if and only if E(G) = 3and V(G) = 3. 2. 

_((f4g; f6g)) = 4; in general we have _(G) = 4 if and only if E(G) = 6and V(G) 

= 4. Example 5. 2. 6 On the other hand the following graphs will not be n-1 

colourable: 1. _((f3g; f3g)) 6= 2; if and only if E(G) = 3. 2. _((f4g; f6g)) 6= 3; 

if and only if E(G) = 6. 32Clearly shown above for the base case if both the 

sub clauses are true thenas a result the graph-colouring problem is 

satis_edLemma 5. 2. 7 There is a polynomial-time reduction (recall De_nition 

3. 4. 3)from 3SAT (recall De_nition 5. 3. 1) to 3COL (see De_nition 5. 2. 1). 

Let Ufu1, u2,..., ung and C = fc1, c2,..., cmg be any instance of 3SAT. We 

must con-truct a graph G = (V, E) such that G is 3COL if and only if 3SAT is 

satis_able. To prove 3-colourable is NP-complete we use a gadget 

construction from3SAT by mapping a given 3CNF formulaHto the graph G 

that consists of avertex for each variable, a vertex for the negation of each 

variable, 5 vertices foreach clause and 3 special vertices: TRUE, FALSE and 

BLUE. The edges of thegraph are of two types: literal edges which are 

independent of the clause andclause edges that depend on the clause. The 

TRUE and FALSE of the special vertices that are connected by an edgewhich 

indicates they must be given di_erent colours in the 3 - colouring problem, 

most often than not True is given the colour green and False is given the 

colourred. The third special vertex which is BLUE is connected to both the 

TRUEand FALSE vertices. The 3 special vertices would look as follows below: 

33For each clause the variable x is a pair of vertices which associated with 
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twoliterals x and : x. For each clause we have three of these vertices and 

they are allconnected to the vertex blue by an edge. Such that, the 

negation : x would havedi_erent colour to x and at least one of the literal 

vertices must be assigned toTrue. The connecting of variables to the special 

vertices would look as followsfor the following formula (xWyWz ) where x = 

1, y = 1 and z = 0: For each clause we will end up with 5 special vertices 

with 5 edges whichwould be connected in a similar way to the diagram below

were the bottomvertex of the triangle is coloured Green or Red according to 

the outcome of thesub clause, for example for our clause (xWyWz), where hx

= 1, y = 1 and z= 0i the bottom vertex would be coloured Green as shown 

below. Now we suppose that the 3-SAT formulaHis Satis_able. We will show 

thisby constructing a truthtable for the 3-SAT formulaH(xWyWz) to show 

thatwe have a satisfying instance of the formula. The truthtable below shows

thatwe have a satisfying instance where hx = 1, y = 1 and z = 0i: 34The 

gadget has the property that it is possible to colour the terminals withany 

combination of the colours True and False, except for colouring all the 

literalvertices with False. Such that, in any legal 3-colouring of graph G, if no 

literalsis coloured Blue, then at least one of these literals is coloured True. 

For each ground vertex there exist an edge which is connected to True 

and/orFalse of the master vertex. So using the case of the truth table 

showing that allthe ground vertices cannot to False, thus the failing of the 

truth table impliesthe graph cannot be satis_ed. We have stated earlier that 

at least one of theliterals has to be True and the truth table connects the 

literal and the mastervertex. 35I will now go onto show a 3 colouring gadget 

corresponding to the following3-CNF formula: (x1Wx2Wx3)V(: x1W: 
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x2Wx3)V(x1W: x2Wx3)36These two gadget graphs above show the two 

cases, when the truth tableis not satis_able, implying that the graph is not 

satis_able in the _rst casebecause the truth table is not satis_able we _nd 

that the 3 graph colouring isnot satis_able. The instance when x1 = 1 , x2 = 

1 and x3 = 0: This casedoesn't satisfy in the truth table and it's also the case

that is doesn't satisfy inthe 3-graph colouring. Secondly, the instance when 

x1 = 1 , x2 = 0 and x3 = 1: This case in the truth table is satis_ed and it's 

also the case that the 3-graphcolouring is also satis_able. 375. 3 3-

SATDiscoveryThe 3SAT problem was the second problem that was proved to 

be in the complexityclass NP-complete in Stephen Cook's paper " The 

complexity of theoremproving procedures" [7]. 2SAT e_eciently solved in 

polynomial time is shownin [2], but it reamins NP-complete for 3SAT. 

Stephen Cook used the Satis_abilityproblem to prove a polynomial time 

reduction to 3SAT. De_nition 5. 3. 1 Consider a conjunctive normal form 

formulaH(recall De_-nition 2. 3. 1). A 3-SAT decision problem formula 

consists of a collection C = fc1, c2,..., cmg, where each clause has 3 distinct 

literals, Ci = li1Wli2Wli3 ona _nite set U of variables. Is there a truth 

assignment for U that satis_es allthe clauses in C. In other words, the 3SAT 

decision problem inputs a 3SAT formulaHand athe output is YES ifHhas a 

satisfying truth assignment for C, NO otherwise. Example 5. 3. 2 Some 

simple examples of 3-SAT formulas: 1. H= (x1Wx2Wx3)2. H= (x1W: x1W: 

x2)V(x3Wx3Wx4)V(: x1W: x3W: x4)3. H= (x1W: x2W: x3)V(: 

x1Wx2Wx3)V(x1Wx2Wx3)Lemma 5. 3. 3 There is a polynomial-time 

reduction from SAT (see De_nitionXXX) to 3-SAT (see De_nition XXX). Firstly, 

we construct a binary parse tree for the given SAT formulaH, werethe 
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connectives are nodes and the literals are leaves. For the following 

SATformulaH= ((x1 $ x2)W:((: x1 ! x3)Wx4))V: x2. The binary parse 

treewould look as follows: 38The reduction from SAT to binary parse tree 

show that the literal nodemust have one or two leafs, also we introduce a 

variable yi for the output ofthe internal node. We then go onto rewrite the 

original formulaHas the andof the root variable and the conjunction of 

clauses describing the operation ofeach node. For our SAT formula above the

result would look as follows: From the following operation the 

formulaHobtains a conjunction of theclauses which at most has 3 literals. The

_nal requirement is that each clausemust be a disjunction of literals. 

Secondly, we must convert each of the clauses into disjunctive normal form. 

This is converted by constructing a truth table for each of the clauses inH 

'. 
We determine the enteries of the truth table that evaluate to 0 (false). For 

theclauseH'6 the truth table would look as follows: We build the formula in 

Disjunctice normal form which is those entries thathave evaluated to 0. So 

going top down in our truth table forH'6, case 4, 5, 6and 7 would be the 

entries that are transformed to DNF as they all evaluate to0. We do the 

trasnformation by looking at the assignment of variables in thecases, and if 

the variable is assigned to 1 we write down the positive lieral in theclause 

but if the variable is asssigned to 0 we write the negation of that literal. The 

Disjunctive Normal Form that is equivalent to : H'6 is as follows: 
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: 
H'6 = (y6V: x1V: x3)W(: y6Vx1Vx3)W(: y6Vx1V: x3)WV (: y6: x1Vx3)39We 

then go onto convert the formula : H'6 into Conjunctive normal form byusing 

the DeMorgan's Laws. This operation will complement all the lieteralsand 

change disjunctions to conjunctions and conjunctions to disjunctions. 

Thefollowing Disjunctive Normal Form formulaH'6 in Conjunctive Normal 

Formwould look as follows: H" 6 = (: y6Wx1Wx3)V(y6W: x1W: x3)V(y6W: 

x1Wx3)V(y6Wx1W: x3)We can claim that the following clauseH" 6 clause in 

Conjunctive NormalForm is equivalent to the original SAT clauseH'6 as shown

below with the followtwo truthtables: We do the following transformation for 

each clause inH' so that each clause isin Conjunctive Normal Form. The _nal 

step of the transformation is determingthat each clause has exatctly three 

distinct literals. Firstly, if the given clause Ci has exactly 3 literals this means

that Ci satis_esall the requiremts of 3-CNF and can be included in the 

formula. Subsequently, if the given clause Ci = (l1Wl2) has 2 distinct literals, 

weinclude an additional literal to to the clause p and : p as follows 

(l1Wl2Wp)V(l1Wl2W: p) the following clause is equivalent to (l1Wl2) whether 

or not p = 0 or p = 1. All the additional literal do is ful_l the requirement of 3-

CNF thateach clause must have 3 distinct literals. For instance the clause C4 

= (: y4W: y5)V(y4Wy5) from our formulaH" is very much equivalent to (: 

y4WW : y5p)V(: y4W: y5W: p)V(y4Wy5Wp)V(y4Wy5W: p) as shown below: 

40Finally, if the given clause Ci = (l1) has 1 distinct literal, we include 

additionalliterals to the clause p and q as follows: (l1WpWq)V(l1WpWV : q)

(l1W: pWq)V(l1W: pW: q). The following clause is equivalent to l1whether or 

not p = 1 or p = 0 and q = 1 and q = 0. Again, all the additionalliteral do is 
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ful_l the requirement that each clause must have 3-distinct literls. For 

instance the clause Ci = (xi), is very much equivalent to (xiWpWq)V(xiWpW: 

q)V(xiW: pWq) 
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