To calculate the percentage
 composition of the mixture of na2co3 + nahco3 essay s...

Science, Chemistry

ASSIGN BUSTER

Aim - To calculate the percentage composition of the mixture of
$\mathrm{Na} 2 \mathrm{CO} 3+\mathrm{NaHCO} 3$

Procedure

1) Weigh a perfectly dry crucible with properly fitted lid.
2) Weigh the crucible with 1 gram of the mixture.
3) Heat the crucible with a partially open lid for 10 minutes with low flame and gradually increase the flame.
4) Keep heating for 30 minutes.
5) Place the crucible to a dessicator.
6) Weigh the cooled crucible and note it down.

Equipment used -

1) Crucible
2) Weighing machine
3) Dessicator
4) Bunsen burner
5) Tripod stand
6) Lighter
7) The mixture

Qualitative analysis -

1) The cooling process was time consuming.
2) When the heating started, there were some fumes evolved.
3) In the middle of the process of heating some orange colour deposits could be seen in the tripod stand.
4) It was hard to keep the lid of the crucible partially open, as it was not balancing perfectly.
5) The crucible turned very hot, thus it was hard to place the crucible in the dessicator.
6) The vaseline wasn't very sticky, thus the lid of the dessicator wasn't very tight.
7) Once the crucible was placed inside the dessicator, it was difficult to keep the lid partially open as it was too hot to touch and one had to use holder.

DATA COLLECTION

Attempt

Mass of the crucible $+0.001 g$

Mass of the crucible + mixture $+0.001 g$

Mass of the mixture +0.002 g

After Heating, Mass of the crucible +0.001 g

Mass lost after heating +0.002 g

1
27. 385
28. 222
0. 837
28. 000
0. 222

2
30. 238
31. 188
0. 950
30. 951
0. 237

DATA PROCESSING
$2 \mathrm{NaHCO} 3-\mathrm{Na} 2 \mathrm{CO} 3+\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$
https://assignbuster.com/to-calculate-the-percentage-composition-of-the-
mixture-of-na2co3-nahco3-essay-sample/

Molar mass of $2 \mathrm{NaHCO}=168$

Molar mass of $\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}=44+18=62$

As we know the mass of -
$\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}=0.222+0.002 \mathrm{~g}$ in the first attempt.

This was calculated by

Mass lost after heating $=$ (Mass of crucible + mixture $)$ ((After heating mass)

This mass loss is the mass of $\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2$ which evaporates during the heating process.

Now, to calculate the mass of NaHCO 3 can simply be calculated by unitary method as follows -

Let the mass of NaHCO 3 be X

16862

X 0.222

Therefore $X=0.602+0.001 \mathrm{~g}$

As we know that the mass of the mixture before heating was $0.837+0$. 002g

The percentage composition of NaHCO 3 can be calculated as follows $(0.602 / 0.837) * 100=71.9 \%$

Therefore, the percentage composition of Na 2 CO 3 is $100-71.9=28.1 \%$

Error propagation

The absolute uncertainty of the masses was +0.002 g ,

Therefore the percentage uncertainties of the masses were calculated as follows -
$(0.002 / 0.602) * 100=0.2 \%$ (rounded of to one significant figure)
$(0.002 / 0.837) * 100=0.2 \%$ (rounded of to one significant figure)

Therefore, the uncertainty for the final value of $\mathrm{NaHCO} 371.9+0.4 \%$

And $\mathrm{Na} 2 \mathrm{CO} 3=28.1+0.4 \%$

Because the percentage uncertainties are added.

The final answer for the second attempt was =
$\mathrm{NaHCO}=67.6+0.3 \%$
$\mathrm{Na} 2 \mathrm{CO} 3=32.4+0.3 \%$

Conclusion -

My final result would be $30.25+0.6 \%$ as it is the average of both the attempts made.

The real value of the composition is 30%

It is quite close and can be concluded that the answer is not exact due to some human errors or impure mixtures.

Evaluation -

1) The answer could have been more accurate and precise if I would have repeated the experiment once more.
2) Could have used better equipment with more precise readings
3) Made sure that the mixture used was pure.
