
Compiler

Science, Computer Science

https://assignbuster.com/essay-subjects/science/computer-science/
https://assignbuster.com/essay-subjects/science/
https://assignbuster.com/compiler/
https://assignbuster.com/

 Compiler – Paper Example Page 2

Course: Compiler Construction (3468)Semester: Autumn, 2012 Level: BS

(CS)Total Marks: 100 ASSIGNMENT No. 1 Note: All questions carry equal

marks.

Q. 1(a)Define Compiler, using a diagram describes the three phases of

analysis of source program. (b)Explain all the phases of Compiler. c)Consider

the following grammar. S ? > XaYb X ? > bXc | b Y ? > dYa | d Find the first

sets for each non-terminal of the given grammar.

Q. 2(a)Explain the error detection and reporting mechanisms. (b)Write the

intermediate representation code of the following position: = initial + rate *

60

Q. 3(a)Convert the following NFA into equivalent DFA using subset

construction Algorithm. [pic] Note: Show all necessary steps that are

involved in subset construction algorithm. (b) Convert the Following regular

expression into NFA using Thompson’s construction. a ((b| b*c)d)* | d*a

Q. 4(a)Given the following grammar. G > E E > T + E | T T > F * T | F F > a i)

Is this grammar ambiguous? Explain! ii) Draw all parse trees for sentence “

a+a*a+a”. (b) Consider the following grammar. S> A A> A+A | B++ B > y

Draw parse tree for the input “ y+++y++”

Q. 5(a)Explain the role of the Lexical Analyzer and Parser in detail.

(b)Differentiate between Top-down parsing and Bottom-up parsing.

ASSIGNMENT No. 2 Total Marks: 100 Note: All questions carry equal marks.

Q. 1(a)Rewrite the following SDT: A A {a} B | A B {b} | 0 B -> B {c} A | B A

{d} | 1 so that the underlying grammar becomes non-left-recursive. Here, a,

https://assignbuster.com/compiler/

 Compiler – Paper Example Page 3

6, c, and d are actions, and 0 and 1 are terminals. b)This grammar generates

binary numbers with a " decimal" point: S-* L . L | L L-+LBB B -> 0 | 1 Design

an L-attributed SDD to compute S. val, the decimal-number value of an input

string. For example, the translation of string 101. 101 should be the decimal

number 5. 625.

Q. 2(a)Translate the following expressions using the goto-avoiding

translation scheme. i)if (a== b kk c== d | I e== f) x == 1; ii)if (a== b II c==

d || e== f) x == 1; iii)if (a== b && c== d kk e== f) x == 1; (b)Construct the

DAG and identify the value numbers for the sub expressions of the following

expressions, assuming + associates from the left.) a + b+ (a + b). ii) a + b

+ a + b. iii) a + a + ((fl + a + a + (a + a + a + a)).

Q. 3(a)Explain the following i)Back Patching ii)Procedure Calls (b)Generate

code for the following three-address statements, assuming all variables are

stored in memory locations. i) x = 1 ii) x = a iii) x = a + 1 iv) x = a + b v)

The two statements x = b * c y = a + x

Q. 4(a)The programming language C does not have a Boolean type. Show

how a C compiler might translate if-statement into three-address code.

(b)Construct the DAG for the basic block d = b * c e = a + b b = b * c a = e -

d Q. (a)Generate code for the following three-address statements assuming a

and b are arrays whose elements are 4-byte values. i)The four-statement

sequence x = a [i] y = b [j] a [i] = y b [j] = x ii) The three-statement

sequence x = a [i] y = b [i] z = x * y iii) The three-statement sequence x =

a [i] y = b[x] a [i] = y (b)Suppose a basic block is formed from the C

assignment statements x = a + b + c + d + e + f; y = a + c + e; i) Give the

https://assignbuster.com/compiler/

 Compiler – Paper Example Page 4

three-address statements (only one addition per statement) for this block. ii)

Use the associative and commutative laws to modify the block to use the

fewest possible number of 468 Compiler ConstructionCredit Hours: 3(3, 0)

Recommended Book: Compliers; Principles, Techniques, and Tools by Alfred

V. Aho, Ravi Sethi, Jerrey D. Ullman Course Outlines: Unit No. 1

Introduction to Compiling
Compliers, analysis of the source program, the phases of a complier, cousins

of the compiler, the grouping of phases, complier-construction tools Unit No.

2 A Simple One-pass Compiler Overview, syntax definition, syntax-directed

translation, parsing, a translator for simple expressions, lexical analysis,

incorporating a symbol table, abstract stack machines, putting the

techniques together Unit No. Lexical and Syntax Analysis Lexical analysis

(the role of the lexical analyzer, input buffering, specification of tokens,

recognition of tokens, a language for specifying lexical analyzers, finite

automata, from a regular expression to an NFA, design of a lexical analyzer

generator, optimization of DFA-based pattern matchers), syntax analysis (the

role of the parser, context-free grammars, writing a grammar, top-down

parsing, bottom-up parsing, operator-precedence parsing, LR parsers, using

ambiguous grammars, parser generators) Unit No. 4 Syntax-Directed

Translation

Syntax-directed definitions, construction of syntax trees, bottom-up

evaluation of s-attributed definitions, l-attributed definitions, top-down

translation, bottom-up evaluation of inherited attributes, recursive

evaluators, space for attribute values at compile time, assigning space at

complier-construction time, analysis of syntax-directed definitions

https://assignbuster.com/compiler/

 Compiler – Paper Example Page 5

Unit No. 5 Type Checking Type systems, Specification of a simple type

checker, Equivalence of type expressions, Type conversions, Overloading of

functions and operators, Polymorphic functions, an algorithm for unification

Unit No. Intermediate Code Generation Intermediate Languages,

Declarations, Assignment statements, Boolean expressions, Case

statements, Back Patching, Procedure calls Unit No. 7 Code Generations

Issues in the design of a code generator, The target machine, Run-time

storage management, Basic blocks and flow graphs, Next-use information, A

simple code generator, Register allocation and assignment, The dag

representation of basic blocks, Peephole optimization, Generating code from

dags, Dynamic programming code-generation algorithm, Code-generator

generators Unit No. Code Optimization Introduction, The principal sources of

optimization, Optimization of basic blocks, Loops in flow graphs, Introduction

to global data-flow analysis, Iterative solution of data-flow equations, Code-

improving transformations, Dealing with aliases, Data-flow analysis of

structured flow graphs, Efficient data-flow algorithms, A tool for data-flow

analysis, Estimation of types, Symbolic debugging of optimized code Unit No.

Writing a Complier Planning a compiler, Approaches to compiler

development, The compiler-developmentenvironment, Testing and

maintenance, A Look at Some Compilers, EQN, a preprocessor for

typesettingmathematics, Compilers for Pascal, The C compilers, The Fortran

H compilers, The Bliss/11 compiler, Modula-2 optimizing compiler

https://assignbuster.com/compiler/

	Compiler
	Introduction to Compiling

