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supported and inspired me. FLOW INDUCED VIBRATIONS IN PIPES, A FINITE

ELEMENT  APPROACH  IVAN  GRANT  ABSTRACT  Flow  induced  vibrations  of

pipes with internal ? uid ? ow is studied in this work. 

Finite Element Analysis methodology is used to determine the critical ? uid

velocity that induces the threshold of pipe instability. The partial di? erential

equation of motion governing the lateral vibrations of the pipe is employed

to develop the sti? ness and inertia matrices corresponding to two of the

terms of the equations of motion. The Equation of motion further includes a

mixed-derivative term that was treated as a source for a dissipative function.

https://assignbuster.com/flow-induced-vibration/



 Flow induced vibration – Paper Example Page 3

The corresponding matrix with this dissipative function was developed and

recognized as the potentially destabilizing factor for the lateral vibrations of

the ? id carrying pipe.  Two types of boundary conditions,  namely simply-

supported and cantilevered were considered for the pipe. The appropriate

mass, sti? ness, and dissipative matrices were developed at an elemental

level for the ? uid carrying pipe. These matrices were then assembled to

form  the  overall  mass,  sti?  ness,  and  dissipative  matrices  of  the  entire

system. Employing the ? nite  element model  developed in  this  work two

series of parametric studies were conducted. First, a pipe with a constant

wall  thickness of  1 mm was analyzed. Then, the parametric  studies were

extended to a pipe with variable wall thickness. 

In this case, the wall thickness of the pipe was modeled to taper down from

2. 54 mm to 0. 01 mm. This study shows that the critical velocity of a pipe

carrying ? uid can be increased by a factor of six as the result of tapering the
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of Internal Flow Induced Vibrations in Pipes The ? ow of a ? uid through a

pipe can impose pressures on the walls of the pipe causing it  to de? ect

under  certain  ?  ow  conditions.  This  de?  ection  of  the  pipe  may  lead  to

structural instability of the pipe. 

The  fundamental  natural  frequency  of  a  pipe  generally  decreases  with

increasing velocity of ? uid ? ow. There are certain cases where decrease in

this natural frequency can be very important, such as very high velocity ?

ows through ? exible thin-walled pipes such as those used in feed lines to

rocket  motors  and  water  turbines.  The  pipe  becomes  susceptible  to

resonance or fatiguefailureif its natural frequency falls below certain limits.

With large ? uid velocities the pipe may become unstable. The most familiar

form of this instability is the whipping of an unrestricted garden hose. 

The study of dynamic response of a ? uid conveying pipe in conjunction with

the  transient  vibration  of  ruptured  pipes  reveals  that  if  a  pipe  ruptures

through its cross section, then a ? exible length of unsupported pipe is left

spewing out ? uid and is free to whip about and impact other structures. In

power plant plumbing pipe whip is a possible mode of failure. A 1 2 study of

the in? uence of the resulting high velocity ? uid on the static and dynamic

characteristics of  the pipes is therefore necessary. 1.  2 Literature Review

Initial  investigations on the bending vibrations of a simply supported pipe

containing ? id were carried out by Ashley and Haviland[2]. Subsequently,
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Housner[3] derived the equations of motion of a ? uid conveying pipe more

completely  and developed  an equation  relating the  fundamental  bending

frequency of a simply supported pipe to the velocity of the internal ? ow of

the ? uid. He also stated that at certain critical velocity, a statically unstable

condition  could  exist.  Long[4]  presented  an  alternate  solution  to

Housner’s[3] equation of motion for the simply supported end conditions and

also treated the ? xed-free end conditions. He compared the analysis with

experimental results to con? rm the mathematical model. 

His experimental results were rather inconclusive since the maximum ? uid

velocity available for the test was low and change in bending frequency was

very  small.  Other  e?  orts  to  treat  this  subject  were  made  by  Benjamin,

Niordson[6] and Ta Li. Other solutions to the equations of motion show that

type of instability depends on the end conditions of the pipe carrying ? uid. If

the ? ow velocity exceeds the critical velocity pipes supported at both ends

bow  out  and  buckle[1].  Straight  Cantilever  pipes  fall  into  ?  ow  induced

vibrations  and  vibrate  at  a  large  amplitude  when ?  ow  velocity  exceeds

critical  velocity[8-11].  .  3  Objective  The  objective  of  this  thesis  is  to

implement numerical solutions method, more specifically the Finite Element

Analysis (FEA) to obtain solutions for di? erent pipe con? gurations and ?

uid  ?  ow characteristics.  The  governing  dynamic  equation  describing  the

induced structural vibrations due to internal ? uid ? ow has been formed and

dis-  3  cussed.  The governing  equation  of  motion  is  a  partial  di?  erential

equation that is fourth order in spatial variable and second order in time.

Parametric studies have been performed to examine the in? uence of mass

distribution along the length of the pipe carrying ? id. 1. 4 Composition of
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Thesis  This thesis  is  organized according to the following sequences.  The

equations of motions are derived in chapter(II)for pinned-pinned and ? xed-

pinned pipe carrying ? uid. A ? nite element model is created to solve the

equation of motion. Elemental matrices are formed for pinned-pinned and ?

xed-pinned pipe carrying ? uid. Chapter(III)consists of MATLAB programs that

are  used  to  assemble  global  matrices  for  the  above  cases.  Boundary

conditions  are  applied  and  based  on  the  user  de?  ned  parameters

fundamental  natural  frequency for  free  vibration  is  calculated for  various

pipe  con?  urations.  Parametric  studies  are  carried  out  in  the  following

chapter and results are obtained and discussed. CHAPTER II FLOW INDUCED

VIBRATIONS  IN  PIPES,  A  FINITE  ELEMENT  APPROACH  In  this  chapter,  a

mathematical model is formed by developing equations of a straight ? uid

conveying  pipe  and  these  equations  are  later  solved  for  the  natural

frequency and onset of instability of a cantilever and pinned-pinned pipe. 2.

1 2.  1.  1 Mathematical  Modelling  Equations of  Motion  Consider a pipe of

length L, modulus of elasticity E, and its transverse area moment I. A ? uid ?

ows through the pipe at pressure p and density ? t a constant velocity v

through the internal pipe cross-section of area A. As the ? uid ? ows through

the de? ecting pipe it is accelerated, because of the changing curvature of

the pipe and the lateral vibration of the pipeline. The vertical component of ?

uid pressure applied to the ? uid element and the pressure force F per unit

length  applied  on  the  ?  uid  element  by  the  tube  walls  oppose  these

accelerations. Referring to ? gures (2. 1) and 4 5 Figure 2. 1: Pinned-Pinned

Pipe Carrying Fluid * (2. 2), balancing the forces in the Y direction on the ?

uid element for small deformations, gives F ? A ? ? ? 2Y = ? A( + v )2 Y ? x2 ?
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t ? x (2. 1) The pressure gradient in the ? uid along the length of the pipe is

opposed by the shear stress of the ? uid friction against the tube walls. The

sum  of  the  forces  parallel  Figure  2.  2:  Pipe  Carrying  Fluid,  Forces  and

Moments  acting on Elements  (a)  Fluid  (b)  Pipe  **  to  the  pipe  axis  for  a

constant ? ow velocity gives 0 0 * Flow Induced Vibrations, Robert D. Blevins,

Krieger. 1977, P 289 ** Flow Induced Vibrations, Robert D. Blevins, Krieger.

1977, P 289 6 A ? p + ? S = 0 ? x (2. 2) Where S is the inner perimeter of the

pipe,  and  ?  s  the  shear  stress  on  the  internal  surface  of  the  pipe.  The

equations of motions of the pipe element are derived as follows. ? T ? 2Y + ?

S ? Q 2 = 0 ? x ? x (2. 3) Where Q is the transverse shear force in the pipe

and T is the longitudinal tension in the pipe. The forces on the element of the

pipe normal to the pipe axis accelerate the pipe element in the Y direction.

For small deformations, ? 2Y ? 2Y ? Q +T 2 ? F = m 2 ? x ? x ? t (2. 4) Where

m is the mass per unit length of the empty pipe. The bending moment M in

the pipe, the transverse shear force Q and the pipe deformation are related

by ? 3Y ? 

M  =  EI  3  ?  x  ?  x  Q=?  (2.  5)  Combining  all  the  above  equations  and

eliminating Q and F yields: EI ? 4Y ? 2Y ? ? ? Y + (? A ? T ) 2 + ? A( + v )2 Y +

m 2 = 0 4 ? x ? x ? t ? x ? t (2. 6) The shear stress may be eliminated from

equation 2. 2 and 2. 3 to give ? (? A ? T ) = 0 ? x (2. 7) At the pipe end where

x= L,  the tension in  the pipe  is  zero and the ? uid  pressure is  equal  to

ambient pressure. Thus p= T= 0 at x= L, ? A ? T = 0 (2. 8) 7 The equation of

motion  for  a  free  vibration  of  a  ?  uid  conveying  pipe  is  found  out  by

substituting ? A ? T = 0 from equation 2. 8 in equation 2. 6 and is given by

the equation 2. EI ? 2Y ? 2Y ? 4Y ? 2Y +M 2 = 0 + ? Av 2 2 + 2? Av ? x4 ? x ?
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x? t ? t (2. 9) where the mass per unit length of the pipe and the ? uid in the

pipe is given by M = m + ? A. The next section describes the forces acting on

the pipe carrying ? uid for each of the components of eq(2. 9) Y F1 X Z EI ?

4Y ? x4 Figure 2. 3: Force due to Bending Representation of the First Term in

the Equation of Motion for a Pipe Carrying Fluid 8 The term EI ? Y is a force

component acting on the pipe as a result of bending of ? x4 the pipe. Fig(2.

3) shows a schematic view of this force F1. 4 9 Y F2 X Z ? Av 2 ? 2Y ? x2

Figure 2. : Force that Conforms Fluid to the Curvature of Pipe Representation

of the Second Term in the Equation of Motion for a Pipe Carrying Fluid The

term ? Av 2 ? Y is a force component acting on the pipe as a result of ? ow ?

x2 around a  curved pipe.  In  other  words  the  momentum of  the  ?  uid  is

changed leading to a force component F2 shown schematically in Fig(2. 4) as

a result of the curvature in the pipe. 2 10 Y F3 X Z 2? Av ? 2Y ? x? t Figure 2.

5: Coriolis Force Representation of the Third Term in the Equation of Motion

for a Pipe Carrying Fluid ? Y The term 2? Av ? x? t is the force required to

rotate the ? id element as each point 2 in the p rotates with angular velocity.

This force is a result of Coriolis E? ect. Fig(2. 5) shows a schematic view of

this  force  F3.  11  Y  F4  X  Z  M  ?  2Y  ?  t2  Figure  2.  6:  Inertia  Force

Representation  of  the  Fourth  Term in  the  Equation  of  Motion  for  a  Pipe

Carrying Fluid The term M ? Y is a force component acting on the pipe as a

result of Inertia ? t2 of the pipe and the ? uid ? owing through it. Fig(2. 6)

shows a schematic view of this force F4. 2 12 2.  2 Finite Element Model

Consider  a  pipeline  p  that  has  a  transverse  de?  ection  Y(x,  t)  from  its

equillibrium position. 
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The length of the pipe is L, modulus of elasticity of the pipe is E, and the area

moment of inertia is I. The density of the ? uid ? owing through the pipe is ?

at pressure p and constant velocity v, through the internal pipe cross section

having area A. Flow of the ? uid through the de? ecting pipe is accelerated

due to the changing curvature of the pipe and the lateral vibration of the

pipeline. From the previous section we have the equation of motion for free

vibration of a ? uid convering pipe: EI ? 2Y ? 2Y ? 2Y ? 4Y + ? Av 2 2 + 2? Av

+M 2 = 0 ? x4 ? x ? x? t ? t (2. 10) 2. 2. 1 Shape Functions The essence of

the ? ite element method, is to approximate the unknown by an expression

given as n w= i= 1 Ni  ai where Ni  are the interpolating shape functions

prescribed  in  terms  of  linear  independent  functions  and  ai  are  a  set  of

unknown parameters. We shall  now derive the shape functions for a pipe

element. 13 Y R R x L2 L L1 X Figure 2. 7: Pipe Carrying Fluid Consider an

pipe of length L and let at point R be at distance x from the left end. L2= x/L

and L1= 1-x/L. Forming Shape Functions N 1 = L12 (3 ? 2L1) N 2 = L12 L2L N

3 = L22 (3 ? 2L2) N 4 = ? L1L22 L Substituting the values of L1 and L2 we

get (2. 11) (2. 12) (2. 13) (2. 14) N 1 = (1 ? /l)2 (1 + 2x/l) N 2 = (1 ? x/l)2 x/l

N 3 = (x/l)2 (3 ? 2x/l) N 4 = ? (1 ? x/l)(x/l)2 (2. 15) (2. 16) (2. 17) (2. 18) 14 2.

2. 2 Formulating the Sti? ness Matrix for a Pipe Carrying Fluid ? 1 ? 2 W1 W2

Figure 2. 8: Beam Element Model For a two dimensional beam element, the

displacement matrix in terms of shape functions can be expressed as ? ?

w1 ? ? ? ? ? ? 1 ? ? ? [W (x)] = N 1 N 2 N 3 N 4 ? ? ? ? ? w2? ? ? ? 2 (2. 19)

where N1, N2, N3 and N4 are the displacement shape functions for the two

dimensional  beam element as stated in equations (2.  15) to (2.  18).  The

displacements and rotations at end 1 is given by w1, ? and at end 2 is given
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by w2 , ? 2. Consider the point R inside the beam element of length L as

shown in ? gure(2. 7) Let the internal strain energy at point R is given by UR .

The  internal  strain  energy  at  point  R  can  be expressed  as:  1  UR = ?  2

where ? is the stress and is the strain at the point R. (2. 20) 15 ? E 1 ? Figure

2. 9: Relationship between Stress and Strain, Hooks Law Also; ? = E Relation

between stress and strain for elastic material, Hooks Law Substituting the

value of ? from equation(2. 21) into equation(2. 20) yields 1 UR = E 2 (2. 21)

2 (2. 22) 16 ???? ???? A1 z B1 w A z B u x Figure 2. 0: Plain sections remain

plane Assuming plane sections remain same, = du dx (2. 23) (2. 24) (2. 25)

u= z dw dx d2 w = z 2 dx To obtain the internal energy for the whole beam

we integrate  the  internal  strain  energy at  point  R  over  the  volume.  The

internal strain energy for the entire beam is given as: UR dv = U vol (2. 26)

Substituting the value of from equation(2. 25) into (2. 26) yields U= vol 1 2 E

dv 2 (2. 27) Volume can be expressed as a product of area and length. dv =

dA. dx (2. 28) 17 based on the above equation we now integrate equation (2.

27)  over  the  area and over  the  length.  L  U= 0 A 1  2  E dAdx 2  (2.  29)

Substituting the value of rom equation(2. 25) into equation (2. 28) yields L

U= 0 A 1 d2 w E(z 2 )2 dAdx 2 dx (2. 30) Moment of Inertia I for the beam

element is given as ?? = ???? ???? dA z Figure 2. 11: Moment of Inertia for an

Element in  the  Beam I= z  2  dA (2.  31)  Substituting the value  of  I  from

equation(2. 31) into equation(2. 30) yields L U = EI 0 1 d2 w 2 ( ) dx 2 dx2 (2.

32) The above equation for total internal strain energy can be rewritten as L

U = EI 0 1 d2 w d2 w ( )( )dx 2 dx2 dx2 (2. 33) 18 The potential energy of the

beam is nothing but the total internal strain energy. Therefore, L ? = EI 0 1

d2 w d2 w ( )( )dx 2 dx2 dx2 (2. 34) 
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If A and B are two matrices then applying matrix property of the transpose,

yields (AB)T = B T AT (2. 35) We can express the Potential Energy expressed

in equation(2. 34) in terms of displacement matrix W(x)equation(2. 19) as,

1 ? = EI 2 From equation (2. 19) we have ? ? w1 ? ? ? ? ? ? 1 ? ? ? [W ] = N 1

N 2 N 3 N 4 ? ? ? ? ? w2? ? ? ? 2 ? ? N1 ? ? ? ? ? N 2? ? ? [W ]T = ? ? w1 ? 1 w2

? 2 ? ? ? N 3? ? ? N4 L (W )T (W )dx 0 (2. 36) (2. 37) (2. 38) Substituting the

values of W and W T from equation(2. 37) and equation(2. 38) in equation(2.

36) yields ? N1 ? ? ? N 2 ? w1 ? 1 w2 ? 2 ? ? ? N 3 ? N4 ? ? ? ? ? ? N1 ? ? ? ? ?

w1 ? ? ? ? ? 1 ? ? ? ? ? dx (2. 39) ? ? ? w2? ? ? ? 2 1 ? = EI 2 L 0 N2 N3 N4 19

where N1, N2, N3 and N4 are the displacement shape functions for the two

dimensional  beam element as stated in equations (2.  15) to (2.  18).  The

displacements and rotations at end 1 is given by w1, ? 1 and at end 2 is

given by w2 , ? 2. 1 ? = EI 2 L 0 (N 1 ) ? ? ? N 2 N 1 ? w1 ? 1 w2 ? 2 ? ? ? N 3

N 1 ? N4 N1 ? 2 N1 N2 (N 2 )2 N3 N2 N4 N2 N1 N3 N2 N3 (N 3 )2 N4 N3 N1

N4 N2 N4 N3 N4 (N 4 )2 ?? ? w1 ?? ? ?? ? ? ? ? 1 ? ?? ? ? ? ? dx ?? ? ? ? w2? ??

? ? 2 (2. 40) where ? 2 (N 1 ) ? ? L ? N 2 N 1 ? [K] = ? 0 ? N 3 N 1 ? ? N4 N1

N1 N2 (N 2 )2 N3 N2 N4 N2 

N1 N3 N2 N3 (N 3 ) 2 N1 N4 ? N4 N3 ? ? N2 N4 ? ? ? dx ? N3 N4 ? ? 2 (N 4 )

(2. 41) N 1 = (1 ? x/l)2 (1 + 2x/l) N 2 = (1 ? x/l)2 x/l N 3 = (x/l)2 (3 ? 2x/l) N 4

= ? (1 ? x/l)(x/l)2 (2. 42) (2. 43) (2. 44) (2. 45) The element sti? ness matrix

for the beam is obtained by substituting the values of shape functions from

equations  (2.  42)  to  (2.  45)  into  equation(2.  41)  and  integrating  every

element in the matrix in equation(2. 40) over the length L. 20 The Element

sti? ness matrix for a beam element; ? ? 12 6l ? 12 6l ? ? ? ? 2 2? 4l ? 6l 2l ?

EI ? 6l ? [K e ] = 3 ? ? l ?? 12 ? 6l 12 ? 6l? ? ? ? ? 2 2 6l 2l ? 6l 4l (2. 46) 1 2. 2.
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3 Forming the Matrix for the Force that conforms the Fluid to the Pipe A X ?

r ? _______________________ x R Y Figure 2. 12: Pipe Carrying Fluid Model B

Consider a pipe carrying ? uid and let R be a point at a distance x from a

reference plane AB as shown in ? gure(2. 12). Due to the ? ow of the ? uid

through the pipe  a force  is  introduced into  the pipe  causing the pipe  to

curve. This force conforms the ? uid to the pipe at all times. Let W be the

transverse de? ection of the pipe and ? be angle made by the pipe due to the

? uid ? ow with the neutral axis. ? and ? represent the unit vectors along the

X i j ? nd Y axis and r and ? represent the two unit vectors at point R along

the r and ? ? ? axis. At point R, the vectors r and ? can be expressed as ? r =

cos?? + sin?? ? i j (2. 47) ? ? = ? sin?? + cos?? i j Expression for slope at point

R is given by; tan? = dW dx (2. 48) (2. 49) 22 Since the pipe undergoes a

small de? ection, hence ? is very small. Therefore; tan? = ? ie ? = dW dx (2.

51) (2. 50) The displacement of a point R at a distance x from the reference

plane can be expressed as; ? R = W ? + r? j r We di? erentiate the above

equation to get velocity of the ? uid at point R ? ? ? j ? r ? R = W ? + r? + rr ?

r = vf ? here vf is the velocity of the ? uid ? ow. Also at time t; r ? d? r= ? dt

ie r ?? ? d? d? = ?? r= ? d? dt ? Substituting the value of r in equation(2. 53)

yields ? ? ?? ? ? j ? r R = W ? + r? + r?? (2. 57) (2. 56) (2. 55) (2. 53) (2. 54)

(2. 52) ? Substituting the value of r and ? from equations(2. 47) and (2. 48)

into equation(2. 56) ? yields; ? ? ? ? j ? R = W ? + r[cos?? + sin?? + r? [?

sin?? + cos?? i j] i j] Since ? is small The velocity at point R is expressed as; ?

? ? i ? j R = Rx? + Ry ? (2. 59) (2. 58) 23 ? ? i ? j ? ? R = (r ? r?? )? + (W + r?

+ r? )? ? ? The Y component of velocity R cause the pipe carrying ? id to

curve. Therefore, (2. 60) 1 ? ? ? ? T = ? f ARy Ry (2. 61) 2 ? ? where T is the
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kinetic energy at the point R and Ry is the Y component of velocity,? f is the

density of the ? uid, A is the area of cross-section of the pipe. ? ? Substituting

the value of Ry from equation(2. 60) yields; 1 ? ? ? ? ? ? ? ? ? T = ? f A[W 2 +

r2 ? 2 + r2 ? 2 + 2W r? + 2W ? r + 2rr?? ] 2 (2. 62) Substituting the value of r

from equation(2. 54) and selecting the ? rst, second and the ? fourth terms

yields; 1 2 ? ? T = ? f A[W 2 + vf ? 2 + 2W vf ? ] 2 (2. 63) Now substituting

the value of ? from equation(2. 51) into equation(2. 3) yields; dW 2 dW dW 1

2 dW 2 ) + vf ( ) + 2vf ( )( )] T = ? f A[( 2 dt dx dt dx From the above

equation we have these two terms; 1 2 dW 2 ? f Avf ( ) 2 dx 2? f Avf ( dW

dW )( ) dt dx (2. 65) (2. 66) (2. 64) The force acting on the pipe due to the ?

uid ? ow can be calculated by integrating the expressions in equations (2.

65) and (2. 66) over the length L. 1 2 dW 2 ? f Avf ( ) 2 dx (2. 67) L The

expression in equation(2. 67) represents the force that causes the ? uid to

conform to the curvature of the pipe. 2? f Avf ( L dW dW )( ) dt dx (2. 68) 24

The expression in equation(2. 68) represents the coriolis force which causes

the ? id in the pipe to whip. The equation(2. 67) can be expressed in terms of

displacement shape functions derived for the pipe ? = T ? V ? = L 1 2 dW 2 ?

f Avf ( ) 2 dx (2. 69) Rearranging the equation; 2 ? = ? f Avf L 1 dW dW ( )( )

2 dx dx (2.  70) For a pipe element,  the displacement matrix in terms of

shape functions can be expressed as ? ? w1 ? ? ? ? ? ? 1 ? ? ? [W (x)] = N 1 N

2 N 3 N 4 ? ? ? ? ? w2? ? ? ? 2 (2. 71) where N1, N2, N3 and N4 are the

displacement shape functions pipe element as stated in equations (2. 15) to

(2. 18). The displacements and rotations at end 1 is given by w1, ? 1 and at

end 2 is  given by w2 ,  ?  .  Refer  to  ?  gure(2.  8).  Substituting  the shape

functions determined in equations (2. 15) to (2. 18) ? ? N1 ? ? ? ? ? N 2 ? ? ? ?

https://assignbuster.com/flow-induced-vibration/



 Flow induced vibration – Paper Example Page 16

N1 w1 ? 1 w2 ? 2 ? ? ? N3 ? ? ? ? N4 ? ? w1 ? ? ? ? ? ? 1 ? ? ? N 4 ? ? dx (2. 72)

? ? ? w2? ? ? ? 2 L 2 ? = ? f Avf 0 N2 N3 25 L 2 ? = ? f Avf 0 (N 1 ) ? ? ? N 2 N

1 ? w1 ? 1 w2 ? 2 ? ? ? N 3 N 1 ? N4 N1 ? 2 N1 N2 (N 2 )2 N3 N2 N4 N2 N1 N3

N2 N3 (N 3 )2 N4 N3 N1 N4 N2 N4 N3 N4 (N 4 )2 ?? ? w1 ?? ? ?? ? ? ? ?

1 ? ?? ? ? ? ? dx ?? ? ? ? w2? ?? ? ? 2 (2. 73) where (N 1 ) ? ? L ? N 2 N 1 ? ?

0 ? N 3 N 1 ? ? N4 N1 ? 2 N1 N2 (N 2 )2 N3 N2 N4 N2 N1 N3 N2 N3 (N 3 ) 2

N1 N4 ? 2 [K2 ] = ? f Avf N4 N3 ? N2 N4 ? ? ? dx ? N3 N4 ? ? 2 (N 4 ) (2. 74)

The matrix  K2 represents  the force  that  conforms the ?  uid to the pipe.

Substituting the values of shape functions equations(2. 15) to (2. 18) and

integrating it over the length gives us the elemental matrix for the ? 36 3 ?

36 ? ? 4 ? 3 ? Av 2 ? 3 ? [K2 ]e = ? 30l ?? 36 ? 3 36 ? ? 3 ? 1 ? 3 above

force.  ?  3  ?  ?  ?  1?  ?  ?  ?  ?  3?  ?  4  (2.  75)  26 2.  2.  4 Dissipation  Matrix

Formulation for a Pipe carrying Fluid The dissipation matrix represents the

force that causes the ? uid in the pipe to whip creating instability in the

system. To formulate this matrix we recall equation (2. 4) and (2. 68) The

dissipation function is given by; D= L 2? f Avf ( dW dW )( ) dt dx (2. 76)

Where L is the length of the pipe element, ? f is the density of the ? uid, A

area of cross-section of the pipe, and vf velocity of the ? uid ? ow. Recalling

the displacement shape functions mentioned in equations(2. 15) to (2. 18); N

1 = (1 ? x/l)2 (1 + 2x/l) N 2 = (1 ? x/l)2 x/l N 3 = (x/l)2 (3 ? 2x/l) N 4 = ? (1 ?

x/l)(x/l)2  (2.  77)  (2.  78)  (2.  79)  (2.  80)  The  Dissipation  Matrix  can  be

expressed  in  terms  of  its  displacement  shape  functions  as  shown  in

equations(2. 77) to (2. 80). ? ? N1 ? ? ? ? ? N 2 ? L ? ? D = 2? Avf ? N1 N2 N3

N4 w1 ? 1 w2 ? 2 ? ? ? 0 N3 ? ? ? ? N4 (N 1 ) ? ? ? N 2 N 1 ? w1 ? 1 w2 ?

2 ? ? ? N 3 N 1 ? N4 N1 ? 2 ? ? w1 ? ? ? ? ? ? 1 ? ? ? ? ? dx ? ? ? w2? ? ? ? 2 (2.
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81) N1 N2 (N 2 )2 N3 N2 N4 N2 N1 N3 N2 N3 (N 3 )2 N4 N3 N1 N4 N2 N4 N3

N4 (N 4 )2 L 2? f Avf 0 ?? ? w1 ?? ? ?? ? ? ? ? 1 ? ?? ? ? ? ? dx ?? ? ? ?

w2? ??  ?  ?  2  (2.  82)  27 Substituting the  values of  shape functions  from

equations(2. 77) to (2. 80) and integrating over the length L yields; ? ? ? 30 6

30 ? 6 ? ? ? ? 0 6 ? 1? ? Av ? 6 ? ? [D]e = ? ? 30 ?? 30 ? 6 30 6 ? ? ? ? ? 6 1 ? 6

0 [D]e represents the elemental dissipation matrix. (2. 83) 28 2. 2. 5 

Inertia Matrix Formulation for a Pipe carrying Fluid Consider an element in

the pipe having an area dA, length x, volume dv and mass dm. The density

of the pipe is ? and let W represent the transverse displacement of the pipe.

The displacement model for the Assuming the displacement model of the

element  to  be  W  (x,  t)  =  [N  ]we  (t)  (2.  84)  where  W  is  the  vector  of

displacements,[N] is the matrix of shape functions and we is the vector of

nodal displacements which is assumed to be a function of time. Let the nodal

displacement be expressed as; W = weiwt Nodal Velocity can be found by di?

erentiating the equation() with time. W = (iw)weiwt (2. 86) (2. 85) Kinetic

Energy of a particle can be expressed as a product of mass and the square of

velocity 1 T = mv 2 2 (2. 87) Kinetic energy of the element can be found out

by integrating equation(2. 87) over the volume. Also, mass can be expressed

as the product of density and volume ie dm = ? dv T = v 1 ? 2 ? W dv 2 (2.

88) The volume of the element can be expressed as the product of area and

the length. dv = dA. dx (2. 89) Substituting the value of volume dv from

equation(2. 89) into equation(2. 88) and integrating over the area and the

length yields; T = ? w2 2 ? ? W 2 dA. dx A L (2. 90) 29 ? dA = ? 

A A (2. 91) Substituting the value of A ? dA in equation(2. 90) yields; ?? Aw2

2 T = ? W 2 dx L (2. 92) Equation(2. 92) can be written as; ?? Aw2 2 T = ? ?
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W W dx L (2. 93) The Lagrange equations are given by d dt where L= T ? V

(2. 95) ? L ? w ? ? ? L ? w = (0) (2. 94) is called the Lagrangian function, T is

the kinetic energy, V is the potential energy, ? W is the nodal displacement

and W is the nodal velocity. The kinetic energy of the element ” e” can be

expressed as Te = ?? Aw2 2 ? ? W T W dx L (2. 96) ? and where ? is the

density and W is the vector of velocities of element e. The expression for T

using the eq(2. 9)to (2. 21) can be written as; ? ? N1 ? ? ? ? ? N 2? ? ? w1 ? 1

w2 ? 2 ? ? N 1 N 2 N 3 N 4 ? ? ? N 3? ? ? N4 ? ? w1 ? ? ? ? ? ? 1 ? ? ? ? ?

dx ? ?  ?  w2? ? ?  ?  2 ??  Aw2 T = 2 e (2.  97)  L 30 Rewriting  the above

expression we get; ? (N 1)2 ? ? ? N 2N 1 ?? Aw2 ? Te = w1 ? 1 w2 ? 2 ? ? 2 L ?

N 3N 1 ? N 4N 1 ?? ? N 1N 2 N 1N 3 N 1N 4 w1 ?? ? ?? ? 2 (N 2) N 2N 3 N 2N

4? ? ? 1 ? ?? ? ? ? ? dx ?? ? N 3N 2 (N 3)2 N 3N 4? ? w2? ?? ? 2 N 4N 2 N 4N 3

(N 4) ? 2 (2. 98) Recalling the shape functions derived in equations(2. 15) to

(2. 18) N 1 = (1 ? x/l)2 (1 + 2x/l) N 2 = (1 ? x/l)2 x/l N 3 = (x/l)2 (3 ? 2x/l) N 4

= ? (1 ? x/l)(x/l)2 (2. 9) (2. 100) (2. 101) (2. 102) Substituting the shape

functions from eqs(2. 99) to (2. 102) into eqs(2. 98) yields the elemental

mass matrix for a pipe. ? ? 156 22l 54 ? 13l ? ? ? ? 2 2? ? 22l 4l 13l ? 3l ? Ml ?

[M ]e = ? ? ? 420 ? 54 13l 156 ? 22l? ? ? ? 2 2 ? 13l ? 3l ? 22l 4l (2. 103)

CHAPTER  III  FLOW  INDUCED  VIBRATIONS  IN  PIPES,  A  FINITE  ELEMENT

APPROACH 3. 1 Forming Global Sti? ness Matrix from Elemental Sti? ness

Matrices Inorder to form a Global Matrix, we start with a 6x6 null matrix, with

its  six  degrees  of  freedom being  translation  and rotation  of  each  of  the

nodes. So our Global Sti? ness matrix looks like this: ? 0 ? ? 0 ? ? ? ? 0 =? ? ?

0 ? ? ? 0 ? ? 0 ? 0? ? 0? ? ? ? 0? ? ? 0? ? ? 0? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 KGlobal (3. 1) 31 32 The two 4x4 element sti? ness matrices
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are: ? ? 12 6l ? 12 6l ? ? ? ? 4l2 ? 6l 2l2 ? EI ? 6l ? ? e [k1 ] = 3 ? ? l ?? 12 ? 6l

12 ? 6l? ? ? ? ? 2 2 6l 2l ? 6l 4l ? 12 6l ? 12 6l ? (3. 2) ? ? ? ? 2 2? 4l ? 6l 2l ?

EI ? 6l ? e [k2 ] = 3 ? ? l ?? 12 ? 6l 12 ? 6l? ? ? ? ? 2 2 6l 2l ? 6l 4l (3. 3) We

shall now build the global sti? ness matrix by inserting element 1 ? rst into

the global sti? ness matrix. 6l ? 12 6l 0 0? ? 12 ? ? ? 6l 4l2 ? 6l 2l2 0 0? ? ? ? ?

? ? ?? 12 ? 6l 12 ? l 0 0? EI ? ? = 3 ? ? l ? 6l 2 2 2l ? 6l 4l 0 0? ? ? ? ? ? 0 0 0 0

0 0? ? ? ? ? 0 0 0 0 0 0 ? ? KGlobal (3. 4) Inserting element 2 into the global

sti? ness matrix ? ? 6l ? 12 6l 0 0 ? ? 12 ? ? ? 6l 4l2 ? 6l 2l2 0 0 ? ? ? ? ? ? ?

EI ?? 12 ? 6l (12 + 12) (? 6l + 6l) ? 12 6l ? ? KGlobal = 3 ? ? l ? 6l 2 2 2 2? ? 2l

(? 6l + 6l) (4l + 4l ) ? 6l 2l ? ? ? ? ? 0 0 ? 12 ? 6l 12 ? 6l? ? ? ? ? 2 2 0 0 6l 2l ?

6l 4l (3. 5) 33 3. 2 Applying Boundary Conditions to Global Sti? ness Matrix

for simply supported pipe with ? uid ? ow When the boundary conditions are

applied to a simply supported pipe carrying ? uid, the 6x6 Global Sti? ess

Matrix formulated in eq(3. 5) is modi? ed to a 4x4 Global Sti? ness Matrix. It

is as follows; Y 1 2 X L Figure 3. 1: Representation of Simply Supported Pipe

Carrying Fluid ? ? 4l2 ? 6l 2l2 0 KGlobalS ? ? ? ? EI ?? 6l (12 + 12) (? 6l + 6l)

6l ? ? ? = 3 ? ? l ? 2l2 (? 6l + 6l) (4l2 + 4l2 ) 2l2 ? ? ? ? ? 2 2 0 6l 2l 4l (3. 6)

Since  the  pipe  is  supported  at  the  two  ends  the  pipe  does  not  de?  ect

causing its two translational degrees of freedom to go to zero. Hence we end

up with the Sti? ness Matrix shown in eq(3. 6) 34 3. 3 Applying Boundary

Conditions to Global Sti? ness Matrix for a cantilever pipe with ? id ? ow Y E, I

1 2 X L Figure 3. 2: Representation of Cantilever Pipe Carrying Fluid When

the boundary conditions are applied to a Cantilever pipe carrying ? uid, the

6x6 Global Sti? ness Matrix formulated in eq(3. 5) is modi? ed to a 4x4 Global

Sti?  ness  Matrix.  It  is  as  follows;  ?  (12  +  12)  (?  6l  +  6l)  ?  12  6l  ?
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KGlobalS ? ? ? ? ?(? 6l + 6l) (4l2 + 4l2 ) ? 6l 2l2 ? EI ? ? = 3 ? ? ? l ? ? 12 ? 6l

12 ? 6l? ? ? ? 6l 2l2 ? 6l 4l2 (3. 7) Since the pipe is supported at one end the

pipe  does  not  de?  ect  or  rotate  at  that  end  causing  translational  and

rotational degrees of freedom at that end to go to zero. 

Hence we end up with the Sti? ness Matrix shown in eq(3. 8) 35 3. 4 MATLAB

Programs  for  Assembling  Global  Matrices  for  Simply  Supported  and

Cantilever  pipe  carrying  ?  uid  In  this  section,  we implement  the  method

discussed  in  section(3.  1)  to  (3.  3)  to  form  global  matrices  from  the

developed elemental matrices of a straight ? uid conveying pipe and these

assembled matrices are later solved for the natural frequency and onset of

instability of a cantlilever and simply supported pipe carrying ? uid utilizing

MATLAB Programs. Consider a pipe of length L, modulus of elasticity E has ?

uid ? wing with a velocity v through its inner cross-section having an outside

diameter od, and thickness t1. The expression for critical velocity and natural

frequency of the simply supported pipe carrying ? uid is given by; wn = ((3.

14)2 /L2 ) vc = (3.  14/L)  (E ? I/M ) (3. 8) (3. 9)  (E ? I/?  A) 3.  5 MATLAB

program for a simply supported pipe carrying ? uid The number of elements,

density, length, modulus of elasticity of the pipe, density and velocity of ? uid

? owing through the pipe and the thickness of the pipe can be de? ned by the

user. Refer to Appendix 1 for the complete MATLAB Program. 36 3. 6 

MATLAB program for a cantilever pipe carrying ? uid Figure 3. 3: Pinned-Free

Pipe Carrying Fluid* The number of elements, density, length, modulus of

elasticity of the pipe, density and velocity of ? uid ? owing through the pipe

and the thickness of the pipe can be de? ned by the user. The expression for

critical velocity and natural frequency of the cantilever pipe carrying ? uid is
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given by; wn = ((1. 875)2 /L2 ) (E ? I/M ) Where, wn = ((an2 )/L2 ) (EI/M )an =

1. 875, 4. 694, 7. 855 vc = (1. 875/L) (E ? I/? A) (3. 11) (3. 10) Refer to

Appendix 2 for the complete MATLAB Program. 0 * Flow Induced Vibrations,

Robert D. 

Blevins, Krieger. 1977,  P 297 CHAPTER IV FLOW INDUCED VIBRATIONS IN

PIPES, A FINITE ELEMENT APPROACH 4. 1 Parametric Study Parametric study

has been carried out in this chapter. The study is carried out on a single p

steel pipe with a 0. 01 m (0. 4 in. ) diameter and a . 0001 m (0. 004 in. ) thick

wall.  The  other  parameters  are:  Density  of  the  pipe  ?  p  (Kg/m3  )  8000

Density of the ? uid ? f (Kg/m3 ) 1000 Length of the pipe L (m) 2 Number of

elements n 10 Modulus Elasticity E (Gpa) 207 of MATLAB program for the

simply supported pipe with ? uid ? ow is utilized for these set of parameters

with varying ? uid velocity. 

Results from this study are shown in the form of graphs and tables.  The

fundamental frequency of vibration and the critical velocity of ? uid for a

simply supported pipe 37 38 carrying ? uid are: ? n 21. 8582 rad/sec vc 16.

0553 m/sec Table 4. 1: Reduction of Fundamental Frequency for a Pinned-

Pinned  Pipe  with  increasing  Flow  Velocity  Velocity  of  Fluid(v)  Velocity

Ratio(v/vc) 0 2 4 6 8 10 12 14 16. 0553 0 0. 1246 0. 2491 0. 3737 0. 4983 0.

6228 0. 7474 0. 8720 1 Frequency(w) 21. 8806 21. 5619 20. 5830 18. 8644

16. 2206 12. 1602 3. 7349 0. 3935 0 Frequency Ratio(w/wn) 1 0. 9864 0.

9417 0. 8630 0. 7421 0. 5563 0. 709 0. 0180 0 39 Figure 4. 1: Reduction of

Fundamental  Frequency  for  a  Pinned-Pinned  Pipe  with  increasing  Flow

Velocity The fundamental frequency of vibration and the critical velocity of ?

uid for a Cantilever pipe carrying ? uid are: ? n 7. 7940 rad/sec vc 9. 5872
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m/sec  40  Figure  4.  2:  Shape  Function  Plot  for  a  Cantilever  Pipe  with

increasing Flow Velocity Table 4. 2: Reduction of Fundamental Frequency for

a Pinned-Free Pipe with increasing Flow Velocity Velocity of Fluid(v) Velocity

Ratio(v/vc) 0 2 4 6 8 9 9. 5872 0 0. 2086 0. 4172 0. 6258 0. 8344 0. 9388 1

Frequency(w) 7. 7940 7. 5968 6. 9807 5. 8549 3. 825 1. 9897 0 Frequency

Ratio(w/wn) 1 0. 9747 0. 8957 0. 7512 0. 4981 0. 2553 0 41 Figure 4. 3:

Reduction of Fundamental Frequency for a Cantilever Pipe with increasing

Flow Velocity  CHAPTER V FLOW INDUCED VIBRATIONS IN PIPES,  A FINITE

ELEMENT APPROACH E, I  v L Figure 5. 1:  Representation of Tapered Pipe

Carrying Fluid 5. 1 Tapered Pipe Carrying Fluid Consider a pipe of length L,

modulus of elasticity E. A ? uid ? ows through the pipe at a velocity v and

density ? through the internal pipe cross-section. As the ? uid ? ows through

the de? ecting pipe it is accelerated, because of the changing curvature 42

43 f the pipe and the lateral vibration of the pipeline. The vertical component

of ? uid pressure applied to the ? uid element and the pressure force F per

unit length applied on the ? uid element by the tube walls  oppose these

accelerations. The input parameters are given by the user. Density of the

pipe ? p (Kg/m3 ) 8000 Density of the ? uid ? f (Kg/m3 ) 1000 Length of the

pipe L (m) 2 Number of elements n 10 Modulus Elasticity E (Gpa) 207 of For

these user  de? ned values we introduce  a  taper in  the pipe  so  that  the

material property and the length of the pipe with the taper or without the

taper remain the same. 

This is done by keeping the inner diameter of the pipe constant and varying

the outer diameter.  Refer to ? gure (5.  2) The pipe tapers from one end

having a thickness x to the other end having a thickness Pipe Carrying Fluid

https://assignbuster.com/flow-induced-vibration/



 Flow induced vibration – Paper Example Page 23

9. 8mm OD= 10 mm L= 2000 mm x mm t = 0. 01 mm ID= 9. 8 mm Tapered

Pipe Carrying Fluid Figure 5. 2: Introducing a Taper in the Pipe Carrying Fluid

of t = 0. 01mm such that the volume of material is equal to the volume of

material 44 for a pipe with no taper. The thickness x of the tapered pipe is

now calculated: From ? gure(5. 2) we have • Outer Diameter of the pipe with

no  taper(OD)  10  mm  •  Inner  Diameter  of  the  pipe(ID)  9.  mm  •  Outer

Diameter of thick end of the Tapered pipe (OD1 ) • Length of the pipe(L)

2000 mm • Thickness of thin end of the taper(t) 0. 01 mm • Thickness of

thick end of the taper x mm Volume of the pipe without the taper: V1 =

Volume of the pipe with the taper: ? ? L ? 2 V2 = [ (OD1 ) + (ID + 2t)2 ] ?

[ (ID2 )] 4 4 3 4 (5. 2) ? (OD2 ? ID2 )L 4 (5. 1) Since the volume of material

distributed over the length of the two pipes is equal We have, V1 = V2 (5. 3)

Substituting the value for V1 and V2 from equations(5. 1) and (5. 2) into

equation(5. 3) yields ? ? ? L ? 2 (OD2 ? ID2 )L = [ (OD1 ) + (ID + 2t)2 ] ?

(ID2 )] 4 4 4 3 4 The outer diameter for the thick end of the tapered pipe can

be expressed as (5. 4) OD1 = ID + 2x (5. 5) 45 Substituting values of outer

diameter(OD),  inner diameter(ID),  length(L)  and thickness(t)  into equation

(5. 6) yields ? 2 ? ? 2000 ? (10 ? 9. 82 )2000 = [ (9. 8 + 2x)2 + (9. 8 + 0.

02)2 ] ? [ (9. 82 )] 4 4 4 3 4 Solving equation (5. 6) yields (5. 6) x = 2. 24mm

(5. 7) Substituting the value of thickness x into equation(5. 5) we get the

outer diameter OD1 as OD1 = 14. 268mm (5. 8) Thus, the taper in the pipe

varies from a outer diameters of 14. 268 mm to 9. 82 mm. 46 

The  following  MATLAB  program  is  utilized  to  calculate  the  fundamental

natural  frequency of  vibration for  a tapered pipe carrying ? uid.  Refer to

Appendix 3 for the complete MATLAB program. Results obtained from the
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program are  given  in  table  (5.  1)  Table  5.  1:  Reduction  of  Fundamental

Frequency  for  a  Tapered  pipe  with  increasing  Flow  Velocity  Velocity  of

Fluid(v) Velocity Ratio(v/vc) 0 20 40 60 80 100 103. 3487 0 0. 1935 0. 3870

0. 5806 0. 7741 0. 9676 1 Frequency(w) 40. 8228 40. 083 37. 7783 33. 5980

26. 5798 10. 7122 0 Frequency Ratio(w/wn) . 8100 0. 7784 0. 7337 0. 6525

0. 5162 0. 2080 0 

The fundamental frequency of vibration and the critical velocity of ? uid for a

tapered pipe carrying ? uid obtained from the MATLAB program are: ? n 51.

4917 rad/sec vc 103. 3487 m/sec CHAPTER VI RESULTS AND DISCUSSIONS In

the present work, we have utilized numerical method techniques to form the

basic  elemental  matrices  for  the  pinned-pinned  and  pinned-free  pipe

carrying ? uid. Matlab programs have been developed and utilized to form

global matrices from these elemental matrices and fundamental frequency

for free vibration has been calculated for various pipe con? gurations and

varying ? uid ? ow velocities. 

Consider a pipe carrying ? uid having the following user de? ned parameters.

E, I v L v Figure 6. 1: Representation of Pipe Carrying Fluid and Tapered Pipe

Carrying Fluid 47 48 Density of the pipe ? p (Kg/m3 ) 8000 Density of the ?

uid ? f (Kg/m3 ) 1000 Length of the pipe L (m) 2 Number of elements n 10

Modulus Elasticity E (Gpa) 207 of Refer to Appendix 1 and Appendix 3 for the

complete MATLAB program Parametric study carried out on a pinned-pinned

and tapered pipe for the same material of the pipe and subjected to the

same conditions reveal that the tapered pipe is more stable than a pinned-

pinned pipe. 
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Comparing the following set of  tables justi?  es the above statement.  The

fundamental frequency of vibration and the critical velocity of ? uid for a

tapered and a pinned-pinned pipe carrying ? uid are: ? nt 51. 4917 rad/sec ?

np 21. 8582 rad/sec vct 103. 3487 m/sec vcp 16. 0553 m/sec Table 6. 1:

Reduction of Fundamental Frequency for a Tapered Pipe with increasing Flow

Velocity Velocity of Fluid(v) Velocity Ratio(v/vc) 0 20 40 60 80 100 103. 3487

0 0. 1935 0. 3870 0. 5806 0. 7741 0. 9676 1 Frequency(w) 40. 8228 40. 083

37. 7783 33. 5980 26. 5798 10. 7122 0 Frequency Ratio(w/wn) 0. 8100 0.

7784  0.  7337  0.  6525  0.  5162  0.  2080  0  9  Table  6.  2:  Reduction  of

Fundamental  Frequency  for  a  Pinned-Pinned  Pipe  with  increasing  Flow

Velocity Velocity of Fluid(v) Velocity Ratio(v/vc) 0 2 4 6 8 10 12 14 16. 0553

0 0. 1246 0. 2491 0. 3737 0. 4983 0. 6228 0. 7474 0. 8720 1 Frequency(w)

21. 8806 21. 5619 20. 5830 18. 8644 16. 2206 12. 1602 3. 7349 0. 3935 0

Frequency Ratio(w/wn) 1 0. 9864 0. 9417 0. 8630 0. 7421 0. 5563 0. 1709 0.

0180 0 The fundamental frequency for vibration and critical velocity for the

onset of instability in tapered pipe is approximately three times larger than

the pinned-pinned pipe, thus making it more stable. 50 6. 1 Contribution of

the Thesis Developed Finite Element Model for vibration analysis of a Pipe

Carrying Fluid. • Implemented the above developed model to two di? erent

pipe con? gurations: Simply Supported and Cantilever Pipe Carrying Fluid. •

Developed  MATLAB  Programs  to  solve  the  Finite  Element  Models.  •

Determined the e? ect of ? uid velocities and density on the vibrations of a

thin  walled  Simply  Supported  and  Cantilever  pipe  carrying  ?  uid.  •  The

critical velocity and natural frequency of vibrations were determined for the

above con? gurations. • Study was carried out on a variable wall thickness
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pipe and the  results  obtained show that  the  critical  ?  id  velocity  can be

increased when the wall thickness is tapered. 6. 2 Future Scope • Turbulence

in  Two-Phase  Fluids  In  single-phase  ?  ow,?  uctuations  are  a  direct

consequence  of  turbulence  developed  in  ?  uid,  whereas  the  situation  is

clearly more complex in two-phase ? ow since the ? uctuation of the mixture

itself is added to the inherent turbulence of each phase. • Extend the study

to a time dependent ? uid velocity ? owing through the pipe. BIBLIOGRAPHY
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54 0. 1 MATLAB program for Simply Supported Pipe Carrying Fluid 

MATLAB program for Simply Supported Pipe Carrying Fluid. % The f o l l o w i

n g MATLAB Program c a l c u l a t e s t h e Fundamental % N a t u r a l f r e q

u e n c y o f v i b r a t i o n , f r e q u e n c y r a t i o (w/wn) % and v e l o c i t

y r a t i o ( v / vc ) , f o r a % simply supported pipe carrying f l u i d . % I n o r

d e r t o perform t h e above t a s k t h e program a s s e m b l e s % E l e m e

n t a l S t i f f n e s s , D i s s i p a t i o n , and I n e r t i a m a t r i c e s % t o

form G l  o b a l  M a t  r  i  c  e s which are used t  o c a l  c u l  a t  e %

Fundamental N a t u r a l % Frequency w . lc ; num elements = input ( ’ Input

number o f e l e m e n t s f o r beam : ’ ) ; % num elements = The u s e r e n

t e r s t h e number o f e l e m e n t s % i n which t h e p i p e % has t o be d i

v i d e d . n= 1: num elements +1;% Number o f nodes ( n ) i s e q u a l t o

number o f %e l e m e n t s p l u s one n o d e l = 1: num elements ; node2 =

2: num elements +1; max nodel= max( n o d e l ) ; max node2= max( node2

) ; max node used= max( [ max nodel max node2 ] ) ; mnu= max node
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used ; k= zeros (2? mnu ) ;% C r e a t i n g a G l o b a l S t i f f n e s s Matrix o

f z e r o s 55 m = zeros (2? nu ) ;% C r e a t i n g G l o b a l Mass Matrix o f z

e r o s x= zeros (2? mnu ) ;% C r e a t i n g G l o b a l Matrix o f z e r o s % f o

r t h e f o r c e t h a t conforms f l u i d % to the curvature of the % pipe d=

zeros (2? mnu ) ;% C r e a t i n g G l o b a l D i s s i p a t i o n Matrix o f z e r o

s %( C o r i o l i s Component ) t= num elements ? 2 ; L= 2; % T o t a l l e n g

t h o f t h e p i p e i n meters l= L/ num elements ; % Length o f an e l e m e

n t t1 =. 0001; od = . 0 1 ; i d= od? 2? t 1 % t h i c k n e s s o f t h e p i p e i n

meter % outer diameter of the pipe % inner diameter of the pipe 

I= pi ? ( od? 4? i d ? 4)/64 % moment o f i n e r t i a o f t h e p i p e E= 207?

10? 9; roh = 8000; rohw = 1000; % Modulus o f e l a s t i c i t y o f t h e p i p

e % Density of the pipe % d e n s i t y o f water ( FLuid ) M = roh ? pi ? ( od?

2? i d ? 2)/4 + rohw? pi ? . 2 5 ? i d ? 2 ; % mass per u n i t l e n g t h o f %

the pipe + f l u i d rohA= rohw? pi ? ( . 2 5 ? i d ? 2 ) ; l= L/ num elements ;

v= 0 % v e l o c i t y o f t h e f l u i d f l o w i n g t h r o u g h t h e p i p e %v

= 16. 0553 z= rohA/M i= sqrt ( ? 1); wn= ( ( 3 . 1 4 ) ? 2 /L? 2)? sqrt (E? I /M)

% N a t u r a l Frequency vc =(3. 14/L)? sqrt (E? 

I /rohA ) % C r i t i c a l V e l o c i t y 56 % Assembling G l o b a l S t i f f n e s

s , D i s s i p a t i o n and I n e r t i a M a t r i c e s for j = 1: num elements d o

f 1 = 2? n o d e l ( j ) ? 1; d o f 2 = 2? n o d e l ( j ) ; d o f 3 = 2? node2 ( j ) ?

1; d o f 4 = 2? node2 ( j ) ; % S t i f f n e s s Matrix Assembly k ( dof1 , d o f

1 )= k ( dof1 , d o f 1 )+ (12? E? I / l ? 3 ) ; k ( dof2 , d o f 1 )= k ( dof2 , d o f

1 )+ (6? E? I / l ? 2 ) ; k ( dof3 , d o f 1 )= k ( dof3 , d o f 1 )+ (? 12? E? I / l ? 3

) ; k ( dof4 , d o f 1 )= k ( dof4 , d o f 1 )+ (6? E? I / l ? 2 ) ; k ( dof1 , d o f 2 )=

k ( dof1 , d o f 2 )+ (6? E? 

https://assignbuster.com/flow-induced-vibration/



 Flow induced vibration – Paper Example Page 29

I / l ? 2 ) ; k ( dof2 , d o f 2 )= k ( dof2 , d o f 2 )+ (4? E? I / l ) ; k ( dof3 , d o f

2 )= k ( dof3 , d o f 2 )+ (? 6? E? I / l ? 2 ) ; k ( dof4 , d o f 2 )= k ( dof4 , d o f

2 )+ (2? E? I / l ) ; k ( dof1 , d o f 3 )= k ( dof1 , d o f 3 )+ (? 12? E? I / l ? 3 ) ;

k ( dof2 , d o f 3 )= k ( dof2 , d o f 3 )+ (? 6? E? I / l ? 2 ) ; k ( dof3 , d o f 3 )=

k ( dof3 , d o f 3 )+ (12? E? I / l ? 3 ) ; k ( dof4 , d o f 3 )= k ( dof4 , d o f 3 )+

(? 6? E? I / l ? 2 ) ; k ( dof1 , d o f 4 )= k ( dof1 , d o f 4 )+ (6? E? I / l ? 2 ) ; k

( dof2 , d o f 4 )= k ( dof2 , d o f 4 )+ (2? E? I / l ) ; k ( dof3 , d o f 4 )= k

( dof3 , d o f 4 )+ (? ? E? I / l ? 2 ) ; k ( dof4 , d o f 4 )= k ( dof4 , d o f 4 )+ (4?

E? I / l ) ; % ?????????????????????????????????????????????? 57 % Matrix a s

s e m b l y f o r t h e second term i e % f o r t h e f o r c e t h a t conforms % f

l u i d to the curvature of the pipe x ( dof1 , d o f 1 )= x ( dof1 , d o f 1 )+

( ( 3 6 ? rohA? v ? 2)/30? l ) ; x ( dof2 , d o f 1 )= x ( dof2 , d o f 1 )+ ( ( 3 ?

rohA? v ? 2)/30? l ) ; x ( dof3 , d o f 1 )= x ( dof3 , d o f 1 )+ (( ? 36? rohA? v ?

2)/30? l ) ; x ( dof4 , d o f 1 )= x ( dof4 , d o f 1 )+ ( ( 3 ? rohA? v ? 2)/30? l ) ;

x ( dof1 , d o f 2 )= x ( dof1 , d o f 2 )+ ( ( 3 ? ohA? v ? 2)/30? l ) ; x ( dof2 , d

o f 2 )= x ( dof2 , d o f 2 )+ ( ( 4 ? rohA? v ? 2)/30? l ) ; x ( dof3 , d o f 2 )= x (

dof3 , d o f 2 )+ (( ? 3? rohA? v ? 2)/30? l ) ; x ( dof4 , d o f 2 )= x ( dof4 , d o f

2 )+ (( ? 1? rohA? v ? 2)/30? l ) ; x ( dof1 , d o f 3 )= x ( dof1 , d o f 3 )+ (( ?

36? rohA? v ? 2)/30? l ) ; x ( dof2 , d o f 3 )= x ( dof2 , d o f 3 )+ (( ? 3? rohA?

v ? 2)/30? l ) ; x ( dof3 , d o f 3 )= x ( dof3 , d o f 3 )+ ( ( 3 6 ? rohA? v ?

2)/30? l ) ; x ( dof4 , d o f 3 )= x ( dof4 , d o f 3 )+ (( ? 3? rohA? v ? 2)/30? l ) ;

x ( dof1 , d o f 4 )= x ( dof1 , d o f 4 )+ ( ( 3 ? rohA? v ? 2)/30? ) ; x ( dof2 , d

o f 4 )= x ( dof2 , d o f 4 )+ (( ? 1? rohA? v ? 2)/30? l ) ; x ( dof3 , d o f 4 )= x (

dof3 , d o f 4 )+ (( ? 3? rohA? v ? 2)/30? l ) ; x ( dof4 , d o f 4 )= x ( dof4 , d o f

4  )+  (  (  4  ?  rohA?  v  ?  2)/30?  l  )  ;
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% ?????????????????????????????????????????????? % D i  s s i  p a t i  o n

Matrix Assembly d ( dof1 , d o f 1 )= d ( dof1 , d o f 1 )+ (2? ( ? 30? rohA?

v ) / 6 0 ) ; d ( dof2 , d o f 1 )= d ( dof2 , d o f 1 )+ ( 2 ? ( 6 ? rohA? v ) / 6 0 ) ;

d ( dof3 , d o f 1 )= d ( dof3 , d o f 1 )+ ( 2 ? ( 3 0 ? rohA? v ) / 6 0 ) ; 58 d

( dof4 , d o f 1 )= d ( dof4 , d o f 1 )+ (2? ( ? 6? rohA? ) / 6 0 ) ; d ( dof1 , d o f

2 )= d ( dof1 , d o f 2 )+ (2? ( ? 6? rohA? v ) / 6 0 ) ; d ( dof2 , d o f 2 )= d

( dof2 , d o f 2 )+ ( 2 ? ( 0 ? rohA? v ) / 6 0 ) ; d ( dof3 , d o f 2 )= d ( dof3 , d

o f 2 )+ ( 2 ? ( 6 ? rohA? v ) / 6 0 ) ; d ( dof4 , d o f 2 )= d ( dof4 , d o f 2 )+

(2? ( ? 1? rohA? v ) / 6 0 ) ; d ( dof1 , d o f 3 )= d ( dof1 , d o f 3 )+ (2? ( ? 30?

rohA? v ) / 6 0 ) ; d ( dof2 , d o f 3 )= d ( dof2 , d o f 3 )+ (2? ( ? 6? rohA? v ) /

6 0 ) ; d ( dof3 , d o f 3 )= d ( dof3 , d o f 3 )+ ( 2 ? ( 3 0 ? rohA? v ) / 6 0 ) ; d

( dof4 , d o f 3 )= d ( dof4 , d o f 3 )+ ( 2 ? ( 6 ? rohA? v ) / 6 0 ) ; ( dof1 , d o f

4 )= d ( dof1 , d o f 4 )+ ( 2 ? ( 6 ? rohA? v ) / 6 0 ) ; d ( dof2 , d o f 4 )= d

( dof2 , d o f 4 )+ ( 2 ? ( 1 ? rohA? v ) / 6 0 ) ; d ( dof3 , d o f 4 )= d ( dof3 , d

o f 4 )+ (2? ( ? 6? rohA? v ) / 6 0 ) ; d ( dof4 , d o f 4 )= d ( dof4 , d o f 4 )+ ( 2

? ( 0 ? rohA? v ) / 6 0 ) ; % ???????????????????????????????????????????? % I

n e r t i a Matrix Assembly m( dof1 , d o f 1 )= m( dof1 , d o f 1 )+ (156? M?

l / 4 2 0 ) ; m( dof2 , d o f 1 )= m( dof2 , d o f 1 )+ (22? l ? 2? M/ 4 2 0 ) ;

m( dof3 , d o f 1 )= m( dof3 , d o f 1 )+ (54? l ? M/ 4 2 0 ) ; m( dof4 , d o f

1 )= m( dof4 , d o f 1 )+ (? 3? l ? 2? M/ 4 2 0 ) ; m( dof1 , d o f 2 )= m( dof1 ,

d o f 2 )+ (22? l ? 2? M/ 4 2 0 ) ; m( dof2 , d o f 2 )= m( dof2 , d o f 2 )+ (4?

M? l ? 3 / 4 2 0 ) ; m( dof3 , d o f 2 )= m( dof3 , d o f 2 )+ (13? l ? 2? M/ 4 2

0 ) ; m( dof4 , d o f 2 )= m( dof4 , d o f 2 )+ (? 3? M? l ? 3 / 4 2 0 ) ; 59

m( dof1 , d o f 3 )= m( dof1 , d o f 3 )+ (54? M? l / 4 2 0 ) ; m( dof2 , d o f

3 )= m( dof2 , d o f 3 )+ (13? l ? 2? M/ 4 2 0 ) ; m( dof3 , d o f 3 )= m( dof3 ,
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d o f 3 )+ (156? l ? M/ 4 2 0 ) ; m( dof4 , d o f 3 )= m( dof4 , d o f 3 )+ (? 22? l

? 2? M/ 4 2 0 ) ; m( dof1 , d o f 4 )= m( dof1 , d o f 4 )+ (? 13? l ? 2? 

M/ 4 2 0 ) ; m( dof2 , d o f 4 )= m( dof2 , d o f 4 )+ (? 3? M? l ? 3 / 4 2 0 ) ; m(

dof3 , d o f 4 )= m( dof3 , d o f 4 )+ (? 22? l ? 2? M/ 4 2 0 ) ; m( dof4 , d o f

4 )= m( dof4 , d o f 4 )+ (4? M? l ? 3 / 4 2 0 ) ; end k ( 1 : 1 , : ) = [ ] ;% A p p

l y i n g Boundary c o n d i t i o n s k(: , 1: 1)=[]; k ( ( 2 ? mnu? 2 ) : ( 2 ?

mnu? 2 ) , : ) = [ ] ; k ( : , ( 2 ? mnu? 2 ) : ( 2 ? mnu? 2 ) ) = [ ] ; k x(1:

1 ,:)=[]; x(: , 1: 1)=[]; x ( ( 2 ? mnu? 2 ) : ( 2 ? mnu? 2 ) , : ) = [ ] ; x ( : , ( 2 ?

mnu? 2 ) : ( 2 ? mnu? 2 ) ) = [ ] ; x; % G l o b a l Matrix f o r t h e % Force t h

a t conforms f l u i d t o p i p e x1=? d(1: 1 ,:)=[]; d(: , 1: 1)=[]; d ( ( 2 ? mnu?

2 ) : ( 2 ? mnu? 2 ) , : ) = [ ] ; % G l o b a l S t i f f n e s s Matrix 60 d ( : , ( 2 ?

mnu? 2 ) : ( 2 ? mnu? 2 ) ) = [ ] ; d d1=(? d ) Kg lobal= k+10? x1 ; m( 1 : 1 , :

) = [ ] ; m( : , 1 : 1 ) = [ ] ; m( ( 2 ? mnu? 2 ) : ( 2 ? mnu? 2 ) , : ) = [ ] ; m( : , (

2 ? mnu? 2 ) : ( 2 ? mnu? 2 ) ) = [ ] ; m; eye ( t ) ; zeros ( t ) ; H=[? inv (m) ? (

d1 ) ? inv (m)? Kglobal ; eye ( t ) zeros ( t ) ] ; Evalue= eig (H) % E i g e n v a

l u e s v r a t i o= v/ vc % V e l o c i t y Ratio % G l o b a l Mass Matrix % G l o

b a l D i s s i p a t i o n 

Matrix i v 2= imag ( Evalue ) ; i v 2 1= min( abs ( i v 2 ) ) ; w1 = ( i v 2 1 ) wn

w r a t i o= w1/wn vc % Frequency Ratio % Fundamental N a t u r a l f r e q u

e n c y 61 0. 2 MATLAB Program for Cantilever Pipe Carrying Fluid MATLAB

Program for Cantilever Pipe Carrying Fluid. % The f o l l o w i n g MATLAB

Program c a l c u l a t e s t h e Fundamental % N a t u r a l f r e q u e n c y o f

v i b r a t i o n , f r e q u e n c y r a t i o (w/wn) % and v e l o c i t y r a t i o

( v / vc ) , f o r a c a n t i l e v e r p i p e % carrying f l u i d . I n o r d e r t o

perform t h e above t a s k t h e program a s s e m b l e s % E l e m e n t a l S
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t i f f n e s s , D i s s i p a t i o n , and I n e r t i a m a t r i c e s % t o form G l o

b a l M a t r i c e s which are used % t o c a l c u l a t e Fundamental N a t u r

a l % Frequency w . clc ; num elements = input ( ’ Input number o f e l e m e

n t s f o r Pipe : ’ ) ; % num elements = The u s e r e n t e r s t h e number o f

e l e m e n t s % i n which t h e p i p e has t o be d i v i d e d . = 1: num

elements +1;% Number o f nodes ( n ) i s % e q u a l t o number o f e l e m e

n t s p l u s one n o d e l = 1: num elements ; % Parameters used i n t h e l o

o p s node2 = 2: num elements +1; max nodel= max( n o d e l ) ; max

node2= max( node2 ) ; max node used= max( [ max nodel max node2 ] ) ;

mnu= max node used ; k= zeros (2? mnu ) ;% C r e a t i n g a G l o b a l S t i

f f n e s s Matrix o f z e r o s 62 m = zeros (2? mnu ) ;% C r e a t i n g G l o b

a l Mass Matrix o f z e r o s 
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