Composition and inverse

Science, Mathematics

ASSIGN BUSTER

Composition and Inverse College Composition and Inverse We define the following functions:
$f(x)=2 x+5 g(x)=x 2-3 h(x)=(7-x) / 3$
Compute (f - h)(4).
To evaluate $(f-h)(4)$, the function $(f-h)(x)$ may be found first by subtracting the function $h(x)$ from the function $f(x)$. So,
$f(x)-h(x)=2 x+5---\mathbb{e} f(x)-h(x)=$
--- \& $(f-h)(x)=$
Then upon substitution of 4 into ' x ', $(f-h)(4)==12$
Evaluate the following two compositions:
A: (fog)(x) would pertain to a composition where the function $g(x)$ is composed within the function $f(x)$ such that $g(x)$ serves as an expression that replaces ' x ' in $f(x)$ as follows
--- () (x) $=2()+5=2 \times 2-6+5$
so the expression $x 2-3$ takes the place of ' x ' in $2 x+5$, then applying distributive property and combining like terms, that reduces to
--- © () (x) $=2 \times 2-1$
B: $(\operatorname{hog})(x)$ would pertain to a composition where the function $g(x)$ is composed within the function $h(x)$, and in a similar function (as in part A), $g(x)$ serves as an expression that replaces ' x ' herein -
--- © () $(x)==$
so the expression $x 2-3$ takes the place of ' x ' in $(7-x) / 3$, then distributing the negative sign into the quantity to remove the parentheses and combining like terms, that simplifies to -
--- © () $(x)=$

Graph the $g(x)$ function and transform it so that the graph is moved 6 units to the right and 7 units down.

On transforming $g(x)$ so that the graph shitfs 6 units to the right and 7 units down, the new function would $g(x)=-3-7$ or - 10 whose graph looks -
2. Find the inverse functions:

C: (x) --- from $y=2 x+5$, variables may be switched so that $x=2 y+5$, then isolating the ' y ', 5 must be subtracted (both sides) to have $x-5=2 y$, whereupon division by 2 ,
--- © $(x)=$
D: $(x)--$ e from $y=(7-x) / 3$, switching of variables yields $3 x=7-y$, then adding ' y ' on both sides of the equation and subtracting ' $3 x$ ' to get ' y ' by itself on one side,
--- e $(x)=7-3 x$

