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Foreword 
The present text was not written by a statistician or a developer of MRI 

analysis, but by a “ statistics-aware” MRI end user. It may contain 

questionable statements or approximations. More authoritative references 

are provided. On the other hand, most of it that is correct should be obvious 

for a specialist, who may not learn anything new. However, many MRI users 

may find here matter of reflection. MRI is more complicated than what 

efficient and widely available analysis programs may suggest. Critically, 

many serious papers using sophisticated techniques contain errors involving 

the simple and basic logic of statistical inference. Most of these errors have 

already been denounced in other articles. Here I made a short list of those as

well as pitfalls of MRI analysis. Readers may consult the Appendix of the 

companion review paper on synesthesia to read about precise examples (

Hupé and Dojat, 2015 ). I hope that sharing the understanding achieved by a

once naive MRI end user would benefit other MRI end users. 

The goal of this paper is not to provide new guidelines, new statistical 

recipes or any kind of authoritative reference. The “ tools” used here should 

be shared by any scientist: common sense, logical reasoning and thought 

experiments. The minimal knowledge about statistical inference and MRI 

analysis, when required, is also reminded. 

The first part of this paper describes therefore what I consider as the very 

basics of statistical inference, and what I understood of Null Hypothesis 

Significance Tests (NHST). The second part describes when such statistical 

inference was not correctly applied in MRI studies. The list may not be 
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exhaustive: it contains the errors we found in our review of the literature on 

synesthesia. The third part describes the main analysis pipelines used in MRI 

studies. Again, the list is not exhaustive because based only on the literature

we reviewed. Even though it does not include the latest developments, this 

part does describe critical steps and pitfalls that all studies have to face. The 

idea is certainly not to tell that these pipelines are wrong, or to tell which 

method is the best. The idea is to highlight or to remind fundamental 

difficulties that these methods tried to solve. Approximations or unverifiable 

assumptions may well be appropriate for certain studies: making them or not

is the responsibility of the researcher. I hope that trying to clarify them 

would help researchers taking the best decisions. 

Background: Statistical Inference and NHST 
Statistical Inference 
Empirical investigations are based on statistical inference, even before 

computing any kind of statistical test: one wants to draw general conclusions

(the population) based on a limited set of observations (a sample). Biological 

and psychological measurements are noisy. Most quantitative measures 

assume a model of the form: empirical observation = true value + error. A 

single observation is meaningless when the possible magnitude of the error 

is unknown. Estimating the true value, therefore, requires making several 

observations “ everything else being equal.” In statistical terms, 

observations need to be considered as “ independently and identically 

distributed (i. i. d.)” random variables. This hypothesis depends on the 

empirical design and is often difficult to prove or control entirely (the state of

a subject in the scanner can never be the same at the different times when 
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the BOLD signal is measured). When the sources of measurement errors are 

multiple, errors typically follow a Gaussian distribution (random noise) and 

their sum converges toward zero. The average of observations is then a good

(unbiased, convergent) estimator of the true value. But there are cases when

computing the average of observed values is not correct or not very 

informative about the population, for example when the distribution of 

measures is not symmetrical around its mean, like for a Lognormal 

distribution. In that case, observed for bounded measures like, often, 

response times, an appropriate summary measure is the average of the 

logarithm of the measures, because after data transformation the errors 

follow a Gaussian distribution 1 . 

The normal distribution of errors, assumed in most cases, is difficult to verify 

unless many observations are available. A critical question is the minimum 

number of observations needed for any statistics (including summary 

statistics). Summary statistics and tests can be computed with even a very 

small number of observations. However, estimating the validity of the 

assumptions supporting statistical inference is impossible with small 

numbers. Non-parametric, randomization or bootstrap tests are theoretically 

more valid because they rely on fewer assumptions. For example, the results

of a permutation test are theoretically valid whatever the sample size as 

long as the assumption of exchangeability is valid. However, these results 

may not be empirically valid for small numbers because too few 

measurements may not be representative enough of the population: one can

never exclude the possibility that something unnoticed went wrong with one 

measure or subject. Any statistical measure should not be critically 
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dependent on any single measure. Crossvalidation methods could be 

systematically applied for small samples. You may, for example, remove one 

subject in your analysis to check if the results still hold (leave-one-out 

procedure, jackknife) or split your sample in two (half-split reliability). But 

cross-validation is only possible when you have enough data (see below). A 

related problem due to small samples is known in statistics as overfitting, 

which leads to an inflation of observed significance and effect size when a 

few measures drive most of the effect. Overfitting can be overcome with 

cross-validation methods (for example by reporting the minimum effect size 

or larger p -value measured when removing any one measure or subject). 

Removing outliers based only on the distribution, without prior knowledge (or

documented assumption) on the data distribution, is however not acceptable

practice (fitting of the data to the statistical model; if the data distribution 

does not conform to the validity conditions of the model, a better model 

should be found 2 ). 

The Ill-Posed Logic of NHST: Type III Errors 
NHST correctly compute the probability of observing an empirical value (the 

sample statistics) under the assumption that the Null hypothesis is true. 

When this probability is low, one may decide to take the risk of rejecting the 

Null hypothesis. If the Null is true, this risk corresponds to a Type I error. 

Such reasoning allows neither computation of the probability of being wrong 

when not rejecting the Null Hypothesis (which is a Type II error), nor 

computation of the probability of being wrong when rejecting the Null (

Cohen, 1994 ; Kline, 2004 ). This is because the computed probabilities 

concern the random samples given a true population value, which is never 
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known. What we are interested in is the probability of the population value 

given the observed value in a given sample. Such computation is not 

possible without knowing the priors (Bayes theorem). As phrased by Killeen 

(2005) , when a p -value is below 0. 05 (arbitrary, conventional threshold), 

one can only be “ surprised.” However, publication standards enforce that 

almost only so-called “ significant” results be published, and that “ 

significant” rejections of the Null hypothesis be considered as “ proven.” 

Such strong emphasis on “ significance” is problematic with MRI studies (in 

particular), where controlling everything is not possible, like for example the 

exact matching of subjects when comparing groups (empirical groups of 

synesthetes and controls may differ on things other than synesthesia, for 

example, motivation) or the exact balance between stimuli (attention bias, if 

for some reason one condition looks more interesting than the other). In 

other words, in a given experiment small differences of no interest for the 

question at stake always exist: the Null hypothesis is never true. False 

premises (the Null hypothesis) “ lead to conclusions that may be logically 

consistent but empirically invalid” ( Killeen, 2005 ), what is called a Type III 

error (correctly rejecting the Null hypothesis but for the wrong reason). Of 

course such differences will not be reliable if the paradigm or procedure 

changes, and, therefore, not replicable. But they will generate “ significant” 

effects when increasing the number of measures (e. g., Cohen, 1994 ). 

Indeed, if you consider the Cohen measure of effect size d ′ = (μ1 − μ2)/ sd 

(difference of means over the standard deviation), you obtain t = d ′* sqrt ( n

), meaning that any weak effect becomes significant when increasing the 

number of measures n . This is an empirical law of statistics. Such 
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consideration led Friston (2012) to recommend that MRI studies should not 

involve too many subjects lest very small, unreliable effects be published 

(the optimal number was between 16 and 32; note that this is still larger 

than in most studies on synesthesia considered in our review, but in most 

cases this number would produce underpowered, not reproducible, studies: 

Yarkoni et al., 2010 ; Button et al., 2013 ). But large samples may only be a 

problem when relying solely on a “ significance” threshold. By increasing n 

you get a better estimation of your effect size, and this is what you want (

Cumming, 2012 ; Ingre, 2013 ). Friston also argued that within small samples

only effects large enough will be significant, and these are the effects we are

most interested in, so “ significant results from small samples should be 

taken more seriously than the equivalent results in oversized studies.” This 

logic is however faulty. In fact, if within small samples “ significant” effects 

are indeed always measured as large, this is obtained with a large 

confidence interval. At p = 0. 05, the 95% confidence interval of the true 

effect size includes zero, meaning that a very small effect, possibly due to 

sampling error, may easily be “ significant” (and estimated as large) in a 

small sample (e. g., Christley, 2010 ), especially because of the inflation of 

observed significance and effect size in small samples ( Yarkoni, 2009 ). 

Sampling error is inversely proportional to sampling size. In other words, 

larger samples are always better, and p < 0. 05 is not a sufficient criterion to

be surprised and doubt about the Null hypothesis ( Johnson, 2013 ), because 

we already know that due to empirical constraints the Null hypothesis is 

never true (whatever the presence or not of any effect related to the design 

and tested question). 
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The Ill-Posed Logic of NHST: Multiple Comparisons 
NHST compute the chance of observing values that deviate from a 

theoretical value, due to random sampling noise. Repeating tests at the 5% 

chance level guaranties observing some extreme values at least once 

( http://xkcd. com/882/ ). Voxel-based analysis in MRI requires to perform 

thousands of NHST, and, therefore, to adjust the individual statistical 

threshold accordingly to reduce the risk of making at least one error 

(correction for multiple comparisons in order to control the “ family-wise 

error,” FWE, when considering the whole family of tests). Subjectively, it may

yet still be surprising that a p -value equal to 0. 001 and measured at a given

voxel should be considered as non-significant (one chance over 1000) only 

because many more voxels were tested. Yet it should ( Bennett et al., 2009 ).

On the other hand the procedure to correct for multiple comparisons 

increases the risk of Type II error, which is the risk of not rejecting the Null 

hypothesis when, in fact, it is false. With limited power, a true effect at a 

given voxel may not be more “ significant” than a random variation at 

another voxel. In MRI, these procedures are, therefore, often considered as “ 

too conservative,” but, as pointed by Nichols (2012) , “ that's like saying a 

meter is too short. FWE is just a measure of false positive risk, a stringent 

one.” The correct way to decrease the type II error is to increase the sample 

size, not to increase the risk of false positives. 

The crucial question is, in fact, the definition of the family of possible 

inferences to consider for a given question. For example, one may study only

voxels in the visual cortex when measuring the response to visual stimuli. 

But when there is no obvious consensus for the definition of the family, this 
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procedure looks arbitrary since the set size depends on the number of 

observed comparisons (the rest of the brain may have been recorded but not

analyzed). Some statisticians, therefore, recommend “ good practices” 

where researchers should tell in advance what comparisons they will make, 

to avoid deciding post-hoc what tests to include in their analysis. Yet such a 

practice would yield to at least paradoxical, if not absurd, consequences 

when, for example, two researchers with the exact same data set would 

reach different conclusions only because they had different hypotheses (

Dienes, 2011 ); or if one of them, by being more ambitious and performing 

additional tests (maybe useful control tests), would not reach “ significance” 

and, therefore, publication standards. This thought experiment suggests that

we should consider the number of possible comparisons (the whole family) 

and not only the number of actual comparisons—which is also absurd (the 

number of possible, maybe useful, comparisons to include in the family may 

be infinite in cognitive science): clearly, how to choose a statistical threshold 

to decide whether an effect is “ significant” or not is an ill-posed problem. I 

am not going to solve this problem here but I consider that “ significant” 

results should be qualified given the a priori used to obtain them. Bayesian 

intuition ( http://xkcd. com/1132/ ) interferes with NHST when not 

acknowledged ( Dienes, 2011 ). 

An Alternative to NHST 
Like others (e. g., Cumming, 2013 ), I consider that publication should prefer 

confidence intervals to arbitrary significance threshold, in order to allow 

cumulative science ( Yarkoni et al., 2010 ) rather than trying to reach 

conclusions after each study (CIs do not allow any probability statement on 
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the population: a 95% CI means that, when repeating the experiment, 95% 

of the samples will include the true value within their 95% CI. This does not 

mean that the true effect lies between the bounds of a given 95% CI with 

95% probability. Conclusions should therefore wait for meta-analyses: 

Cumming, 2012 ). In MRI, though, this may not always be easy or feasible 

given the thousands of comparisons made at each voxel. Improved solutions 

do exist to avoid the emphasis on dichotomous thinking based on an 

arbitrary threshold, which cannot be computed “ correctly” anyway (

Jernigan et al., 2003 ; Allen et al., 2012 ; ideally, results should be presented 

on the flat reconstructed cortical surface, or those in 3D should be available 

as an interactive, online, resource for every MRI study, like at 

http://neurovault. org/ ). Methods to plot the spatial distribution of 

confidence intervals over the brain have been proposed ( Engel and Burton, 

2013 ; Rosenblatt and Benjamini, 2014 ). 

Common Mistakes with Statistical Inference 
Neuroimaging a large cohort of subjects is difficult especially when having to 

recruit synesthetes, so the question of the minimum number of subjects 

required is crucial. Sinke et al. (2012) reminded us “ that at least 12 subjects

should participate in a fMRI group study ( Desmond and Glover, 2002 ) but 

high reliability and sensitivity will only be achieved with more than 20 

subjects” ( Desmond and Glover, 2002 ; Thirion et al., 2007 ). These numbers

may even be too low, especially for structural studies where the brain 

differences between two groups of healthy controls vs. synesthetes if any 

may be subtle. Most studies in neuroimaging ( Yarkoni et al., 2010 ) and 

even neurosciences ( Button et al., 2013 ) are underpowered. What “ 
https://assignbuster.com/statistical-inferences-under-the-null-hypothesis-
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underpowered” means is not so clear, because this depends on the 

(unknown) size of the effects studied. Presenting data with confidence 

intervals rather than p -values (see previous paragraph) directly indicates to 

the reader the precision of the estimation, who can thus evaluate directly the

power of the study (and therefore whether enough subjects were tested). 

However, since most MRI studies on synesthesia used small or even very 

small sample sizes, as well as the NHST logic, I first consider what should be 

the absolute minimal size for a “ group” analysis, and then identify cases 

where the NHST logic, which may not be the optimal way to reach scientific 

conclusions ( Meehl, 1967 ; Cohen, 1994 ; Kline, 2004 ; Cumming, 2012 ; 

Lambdin, 2012 ), is not even correctly applied. In particular, all computations

depend on making the Null hypothesis, yet sometimes authors do not really 

make it or do not clearly define it. 

Sample Size Weakness 
I relied on intuitive considerations in order to evaluate the results of studies 

based on very small numbers of subjects. 

(a) If we consider two conditions (for example the intensity of the BOLD 

signal for two stimuli) and have too few measurements to quantitatively 

interpret the difference of signal 3 , we may still look at the sign of the 

difference. If the BOLD signal is always larger for a stimulus than the other, 

this is certainly meaningful. The most simple and robust way to evaluate “ 

always” against chance is the sign test. This is equivalent to tossing a coin 

many times. The chance of always getting heads (or tails) is 7. 3% when 

flipping a coin 5 times and 4. 1% for 6 times (two-tailed test). Our usual, 

arbitrary, threshold being 5%, 6 should be the absolute minimum number of 
https://assignbuster.com/statistical-inferences-under-the-null-hypothesis-
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observations (or subjects) to be able to measure any “ significant” effect; at 

least 7 subjects are required to verify that the result does not depend on any

critical value (leave-one-out crossvalidation). Studies with less than 6 

subjects should be treated as single-subject studies, and therefore the 

results of each subject should be shown (no group average). 

(b) When comparing two groups of subjects on a given measure, what is the 

minimum number of subjects to be able to observe a “ significant” 

difference? If the values in one group are all above the values in the other 

group, non-parametric Mann-Whitney gives a p-value below 0. 05 only when 

groups include at least 4 subjects ( p = 0. 03). With 4 subjects no cross-

validation at all is possible. The minimum size to reach half-split reliability is 

8 subjects in each group. Group comparisons between 4 and 8 should, 

therefore, be treated with caution. 

Accepting the Null Hypothesis Error 
NHST only permit rejecting the Null hypothesis with some confidence, they 

do not provide any criterion for accepting the Null hypothesis. This is well 

known yet such error is often made when comparing the significance of tests

performed independently in two groups ( Nieuwenhuis et al., 2011 ), for 

example when comparing statistical maps in synesthetes vs. controls. 

Finding significant activations in synesthetes but not controls for a given 

contrast does not allow the conclusion that these activations are significant 

only in synesthetes. A direct comparison is required (typically testing the 

interaction between stimuli and group). 
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Double Dipping Circular Error 
Computing the FWE over all brain voxels when one is only interested in a 

specific brain region increases the risk of Type II error. A common practice to

increase power is to use a priori information, for example a region of interest

(ROI), which allows reduction of the number of meaningful comparisons 

(reduced family or set size). But a circular error is made when using the 

same data to choose the “ interesting” voxels and to test them (

Kriegeskorte et al., 2009 , 2010 ; Vul et al., 2009 ): the so-called a priori 

information is, in fact, defined a posteriori . 

Null Hypothesis Error (a Hypothesis is not an a Priori) 
When wanting to use a priori information to decrease the set size and 

increase power, many studies mistook their hypothesis for an a priori ( Hupé 

et al., 2012b ). For example, assuming that “ color area” V4 is activated by 

synesthetic colors is a reasonable hypothesis, leading authors to apply “ 

small volume correction,” that is, only correcting their p -values by the 

number of voxels in the vicinity of V4. By doing so, however, they cannot 

suggest that V4 is activated by synesthetic colors, since the correct 

description of their reasoning is: “ if it is hypothesized that voxels in V4 are 

activated by synesthetic colors (this is the hypothesis that led to restricting 

the Null hypothesis to V4), then voxels in V4 are observed with ‘ significant’ 

activation.” This leads to some circularity: the activation is detected only if 

one supposed it exists, which means not making the whole brain Null 

hypothesis. The correct interpretation of their analysis is: “ if we assume that

synesthetic colors must activate V4, then we can identify which voxels if any 

within V4 are most likely to be activated by synesthetic colors.” This analysis
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can therefore be meaningful, especially if no “ significant” voxel is found, but

its description must include the conditional probability. Showing that some 

voxels in V4 are indeed activated by synesthetic colors requires one to make

the Null hypothesis, that is, making the hypothesis that no voxels in V4 are 

activated by synesthetic colors. This Null hypothesis is not compatible with 

the restriction of the family of relevant inferences to the V4 region (unless 

stating that no activation by synesthetic colors is possible anywhere else in 

the brain 4 ). 

Random vs. Fixed Effect 
Ideally, we are interested in generalizing an effect observed in a sample of 

subjects to the population. To do that we consider that differences between 

subjects are random variations. Other subjects could have been tested (the 

choice of subjects is supposed to be random). When computing only one 

summary measure by subject the only measured variance to compute NHST 

is across-subject variability, and “ subject” is, therefore, a random variable. 

But often, several measures (repetitions) are computed by subject, leading 

to within-subject variability in addition to across-subject variability. One may 

be interested in the differences between the chosen subjects. In that case, 

one can contrast across-subject variability against the pooled within-subjects

variability (noise term). This is called a fixed-effect analysis (if you want to 

replicate the analysis you should test the same subjects 5 ). If two conditions

were tested (fixed effect), results across subjects apply only to the tested 

sample. In order to be able to generalize to the population, across-subject 

variability needs to be included in the noise term by specifying in the 

statistical design that “ subject” is a random variable (“ mixed model,” which
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includes both fixed and random effects). In complex data analyses, in 

particular, whether subject variability is taken as a random factor is not 

always clear, for example when a network analysis requires computing one 

single statistics for a group of subjects. 

Selective Reporting 
In several studies interesting comparisons were planned, as can be deduced 

from the Methods section. Unfortunately in some studies only selective 

results are then reported. Non-reported results, maybe not consistent with 

the main message in the paper, could, however, be informative to the 

community. Selective reporting practices can sometimes be detected when 

too many “ just significant” results are published (e. g., Francis, 2012 ). 

Pitfalls of MRI Statistics 
The analysis of MRI data requires specific models that go beyond the simple 

principles of statistics described above, in order to address two major 

problems. 

(1) MRI measures information locally (within each voxel) over the whole 

brain. A voxel is not a functional unit. On one hand, each voxel contains 

thousands of neurons; on the other hand, functional or structural information

may be distributed over several voxels: measures across voxels are not 

independent, but to an unknown, experiment dependent, degree. This makes

difficult the proper control of the inflated risk of false positives across many 

voxels. 

(2) Brains are different so the measure in corresponding voxels across 

subjects may not sample comparable information. A fundamental problem is 
https://assignbuster.com/statistical-inferences-under-the-null-hypothesis-
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what information is being matched between brains; the thorough discussion 

and possible resolutions of this problem is beyond the scope of the present 

paper. 

Here I describe the logic of the statistical models used in the reviewed 

papers ( Hupé and Dojat, 2015 ), again the way I understand it as a “ 

statistics-aware” MRI user, not a statistician. 

Regions of Interest 
When possible, a powerful method to match information between brains is to

identify functional units that are similar in each brain (e. g., Poldrack, 2007 ).

For example, retinotopic mapping allows identification of (at least) visual 

areas V1 to V4 in each subject with some confidence. Signals can then be 

measured in each of these regions of interest (ROI) and compared across 

subjects. A related approach is the use of functional localizers to identify 

brain regions that respond more to motion or color (for example). A problem 

arises when there is a lack of strict correspondence between structure and 

function (for example, there is no single “ color” region, and this is certainly 

not strictly retinotopic V4: Brewer et al., 2005 ; Hupé et al., 2012c ), or when 

the protocol may not unambiguously identify a functional area (for example, 

the classical Mondrian localizer for color areas lacks specificity related to 

color processes; moreover, the definition of the ROI requires an arbitrary 

threshold, which leads to make an inference error of the type “ Accepting the

Null hypothesis error”; see Jernigan et al., 2003 ). The ROI approach is, 

therefore, interesting and powerful but the results depend on the hypotheses

made to define and identify the ROIs, which may involve questionable 

choices when done beyond retinotopic areas. 
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Random Field Theory: Peak Statistics 
Voxelwise comparisons across subjects do not rely on such hypotheses and 

choices, but directly face the two major problems of brain differences and 

performing thousands of comparisons. The solution to structural differences, 

spatial smoothing and transforming each brain to a common space, would be

correct only if we had exactly the same brain except for some linear (or even

non-linear) scaling factors. Inferences based on across-subjects statistics 

depend on how wrong this approximation is. To address the problem of 

multiple comparisons, the random field theory (RFT) takes into account 

correlations over neighboring voxels to control the risk of false positives over

the whole brain ( Worsley et al., 1992 ). RFT is applied to statistical maps, for

example the difference of BOLD signal in each voxel measured for two 

different stimuli, typically expressed as a t -value or z-score ( Friston et al., 

1995 ). RFT estimates the smoothness (spatial correlations) and variance of 

the statistical map in order to approximate the upper tail of the maximal 

distribution of the statistics: it computes the t or z threshold above which 

there is less than say 5% chance of observing one cluster of voxels with 

values above that threshold, under the Null hypothesis 6 . These “ peak 

statistics” require several assumptions to be exact ( Petersson et al., 1999 ; 

Nichols and Hayasaka, 2003 ), in particular the “ reasonable lattice 

approximation,” which is obtained when data have been sufficiently spatially

smoothed and the distribution of errors (across trials or subjects) is 

Gaussian. A major issue for this kind of multivariate analysis is the spatial 

heterogeneity of variance across the brain (“ non-stationarity”), especially 

for structural data ( Ashburner and Friston, 2000 ). 
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The measure of peak statistics using the RFT, to be optimal (powerful), 

requires that the spatial filter used to smooth the data be about the same 

size as the spatial extent of the effect to be measured. This extent is 

typically unknown and can be very different depending on what is measured 

and where in the brain. Even if a functional activation is very specific and is 

localized at the exact same anatomical region in each brain (for example the

depth of a given sulcus), if much anatomical variability of this sulcus exists 

across subjects (even after normalization to a common standard space) this 

activation could reveal as significant across subjects only when applying a 

very large spatial filter (note that the localization of the effect would be less 

precise). This consideration led Poline and Mazoyer (1994) to propose a 

multifiltering approach. This method has not been pursued because it 

required large computer resources, a problem now obsolete, even though it 

was efficient and robust ( Poline et al., 1997 ) and relied on the theoretically 

strong RFT. It also introduced a new problem of multiple comparisons (the 

number of “ independent” filter sizes) as well as overfitting (such an 

approach may fit the spatial filter to random noise in the data). 

Random Field Theory: Cluster Extent Statistics 
Cluster extent statistics is an alternative strategy to voxelwise statistics, now

widely used, which somehow addresses the same issue as the multifiltering 

approach. Using RFT, it is possible to compute the number k of voxels in a 

cluster , all with values above a given t or z threshold, beyond which there is 

less than say 5% chance of observing a cluster, under the Null hypothesis (

Poline and Mazoyer, 1993 ). Such computation requires deciding on an 

arbitrary threshold, but then controls the risk of false positives over the 
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whole brain. Most MRI studies now report this cluster extent statistics, which 

is typically more sensitive than voxelwise statistics to revealing significant 

effects. The interpretation of the effects, however, is not as straightforward 

as for voxelwise statistics, because the inference concerns “ having k 

contiguous voxels above a given threshold” (in other terms, nothing can be 

said about specific subregions of the cluster; yet most reviewed papers, 

including ours, only reported one voxel coordinate). Such an effect could be 

obtained, for example, if all subjects have a weak but similar activation all 

over the visual cortex (a weak but widespread effect in each subject). But 

significant clusters can also emerge for highly focal activations but 

differently localized in each subject, like obtained when contrasting colored 

against greyscale Mondrian stimuli (peak activations are observed in each 

subject within the same region, but with much variability in the precise 

anatomical location and number of peaks: Brewer et al., 2005 ; Hupé et al., 

2012b , c ). Whatever its interpretation, the validity of cluster extent 

statistics depends crucially on spatial smoothing and the chosen threshold, 

so these values should be systematically reported (in our review we reported

them in the summary of each study). 

Contrary to parametric tests of the central tendency (like the ANOVA), 

statistics of maximal values (peak or cluster extent) are very sensitive to 

deviations from their conditions of validity, like unequal variance and 

extreme values (outliers). Empirical distributions (obtained with data 

permutations) are indeed highly skewed, especially for cluster extent (see 

Figure 1 by Hayasaka and Nichols, 2004 ), making the estimation of the 

upper tail very sensitive to such deviations. Much effort has been devoted, 
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therefore, to produce a Gaussian distribution of the statistics at each voxel 

and minimize the impact of non-stationarity. When the 

roughness/smoothness of images was poorly estimated, p -values were 

shown to be up to ±20% inaccurate ( Poline et al., 1995 ). Improved methods

include, for example, smoothness estimation from standardized residual 

images ( Kiebel et al., 1999 ), or weighting by the variance in each group, 

even under deviation from normality (Behrens Fisher problem), using 

Brunner Munzel statistics ( Brunner and Munzel, 2000 ; Neubert and Brunner,

2007 ; Rorden et al., 2007 ). In classical ANOVA the conditions of validity are 

easily checked by examination of residuals, which is more difficult with 

multivariate analysis. A method is implemented in SPM 7 “ Distance” toolbox

( Kherif et al., 2003 ) to visualize the multivariate distribution of residuals 

and identify possible outliers. Note however that the identification of “ true” 

outliers can be obtained only with large data sets, like N > 30. Rejecting 

outliers based on small populations like used in MRI studies may lead to the 

rejection of valid observations and therefore fitting the data to the model 

instead of fitting the model to the data (data identified as outliers could in 

any case be rejected only for an independent, valid, reason that can apply to

the whole sample). Inspection of residuals is rarely reported in MRI studies 

and never in the papers that we reviewed. 

Non-stationarity also causes the reasonable lattice approximation to break 

down at low thresholds of statistical values (high p -values). For cluster-

extent statistics, t or z-statistics thresholds should therefore be at least 

above 3 ( Poline et al., 1997 ) or 4 ( Smith and Nichols, 2009 ; see also Woo 

et al., 2014 ). Non-stationarity had also led Ashburner and Friston (2000) to 
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discourage cluster-size statistics for VBM data. However, simulations based 

on empirical data show that a large degree of spatial smoothing is indeed 

necessary but also usually sufficient to obtain reliable results (this procedure

also weakens the weight of large or extreme values measured locally in only 

a few subjects), at the cost of the precision of localization of effects. Thus, 

Silver et al. (2011) recommended that “ cluster size inference should only be

used with high cluster-forming thresholds and smoothness”, such as p = 0. 

001 for voxel threshold and a 12 mm Gaussian kernel (Full Width at Half 

Maximum, FWHM). They observed in simulations that “ false positive rates 

ranged from 9. 8 to 67. 6%” when using a 6 mm Gaussian kernel and 

thresholds such as p = 0. 05 or p = 0. 01. The required spatial smoothing 

may be different for VBM (including diffusion anisotropy, DTI) and FMRI, and 

must also depend on each study. I don't know of any study reporting a 

measure of stationarity in their data, and whether any tool is available. 

Even when applied under optimal conditions, cluster extent statistics pose 

several problems. Nichols acknowledged knowing “ of no formal proof that 

cluster inference has such strong control of Familywise error” ( Nichols, 2012

), while Smith and Nichols (2009) suggested that it may be “ hard to 

persuade the experimenter to honestly correct for “ multiple comparisons” 

across different thresholdings.” I consider indeed that this statistics faces the

same problems as the multifiltering approach: multiple testing and possible 

overfitting 8 . It also poses the problem of selective reporting and 

comparison between studies. Usage wants authors reporting only the value 

of the cluster-forming threshold. But did they try other thresholds? Are 

results different at other thresholds, for example could other “ significant” 
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clusters be discovered that may be more difficult to explain? When authors 

report only voxelwise statistics (for example no significant difference 

between two conditions or two groups) did they also compute cluster extent 

statistics and observed no significant cluster? While visualization of effects 

rather than significance maps may solve this problem in the future ( Allen et 

al., 2012 ), for the present studies, meta-analysis faces strong limitations. 

Permutation Tests 
While SPM software is relying mostly on RFT and parametric computations, 

FSL 9 software favors permutation tests, which can be applied to voxel 

maximum t - or z -value and cluster extent statistics. Permutation tests are 

elegant because they only require the assumption of exchangeability. 

However, the nature of the inference also depends on this assumption. If 

nothing else is known, the only conclusion based on a “ significant” 

permutation test is that exchangeability is violated—that is, two groups are 

different. However, one cannot infer what the nature of the difference is. This

is the case, for example, for the classic Wilcoxon test, a permutation test 

based on ranks ( Manly, 1997 ). This test is typically used as an alternative to

the parametric t -test when normality is violated. However, like the t -test, 

valid inference on the central tendency (mean or median) is only guarantied 

when the variances are similar (homoscedasticity hypothesis). Permutation 

tests are also sensitive to outliers. Imagine that when comparing a group of 

20 synesthetes to a group of 20 controls using a given statistic, 5 subjects 

are clearly outliers (larger values) to a normal distribution of this statistic, all 

of them synesthetes. These values drive a larger summary value across 

synesthetes than controls. By using a permutation test you do not assume 

https://assignbuster.com/statistical-inferences-under-the-null-hypothesis-
common-mistakes-and-pitfalls-in-neuroimaging-studies/



 Statistical inferences under the null hy... – Paper Example  Page 23

normality so you would not identify (and possibly exclude) these subjects. 

You may well observe that the larger value across synesthetes can hardly be

due to chance—the permutation test would mostly compute the chance of 

having the 5 extreme values all within the same group, which is 0. 5 ∧ 5 = 0. 

03. You would, therefore, conclude that the two groups are different. Such a 

conclusion is correct but the interpretation would be wrong if you conclude 

that a correlate of synesthesia is a larger value for your measure. Such an 

interpretation would be based on a model of the type: empirical observation 

= true value + error. This model is clearly wrong here. The correct 

interpretation is that the group of synesthetes is more likely to include 

outliers for this measure. In fact, this fictitious example could happen quite 

easily in case of comorbidity, as suggested for the higher rate of 

radiologically determined white matter hyperintensities (one of the imaging 

criteria for the diagnosis of multiple sclerosis) in self-referred synesthetes 

who had participated in neuroimaging research ( Simner et al., 2014 ). The 

correct interpretation should be the presence of comorbidity in the tested 

sample, but this would tell nothing about the correlates of synesthesia. In 

most cases, of course, the results of permutation tests do not depend so 

strongly on outliers (and in the example above, at most one such case was 

observed in any single study, and when identified, could be excluded from 

the analysis). But each time one wants to infer about the central tendency of

an effect, permutation tests provide statistical measures that are inexact to 

an unknown degree. Only with “ everything else being equal” can we make 

strong inferences on the central tendency. In that case, parametric statistics 

(when possible) should provide the exact same results. Parametric models 
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are often more powerful when they include covariates (like blinks in fMRI 

studies or brain size in VBM studies) 10 . 

False Discovery Rate 
All the statistical measures described above were developed to control the 

risk of being wrong when rejecting the Null hypothesis. An alternative is the 

computation of the false discovery rate (FDR), the expected proportion of 

false positives among detections ( Benjamini and Hochberg, 1995 ). This test

has the great advantage of providing meaningful results even when multiple 

tests are not independent, like across voxels. This also provides two-tailed 

statistics on the central tendency and does not rely on the unstable 

estimation of the upper tail of the statistics (when applied voxelwise). 

However, similarly to Bayesian statistics, FDR results depend on the 

probability of non-Null effects: measured FDR p -values for an effect of 

interest depend on how often the Null hypothesis is non-true. This becomes a

problem when many Null hypotheses are non-true for the wrong reasons or 

because the family of tests is too large (it includes tests that have little 

reason to be included in the “ family”). Let's take a simple example: 

synesthetes may blink more often after synesthetic stimuli because they 

start thinking about the synesthetic color and they need to refocus on the 

task. Blinks activate a large portion of the visual cortex, mostly along the 

parieto-occipital cortex and the anterior calcarine, with only minimum 

influence on responses beyond V4 or in central V4 ( Hupé et al., 2012a ). 

Such a behavior may therefore not affect the central V4 responses to colored

stimuli. However, this will affect the computation of the FDR value. This 

makes therefore the interpretation of the FDR value more problematic than 
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FWE-corrected p -values, obtained under the Null hypothesis. As a 

consequence, sloppy designs may generate more easily “ significant values”:

FDR may “ detect” the expected (“ desired”) effect more easily when many 

differences unrelated to the question asked are present. This non-desirable 

behavior is counter-intuitive, since “ sloppy” designs would be rather 

expected to increase variance (which they may also do, fortunately) and 

therefore decrease significance. 

Conclusion 
I would like to be able to provide some recommendations on the best (or at 

least the less bad) way to analyze MRI data, but I am not qualified to do so. I 

should remind the reader that this text was not written by a statistician or a 

developer of MRI analysis. If recommendations should yet be done to users, 

the first one should be to better detail the analysis pipeline ( Poldrack et al., 

2008 ). The second one would be to try understanding better the tools used 

(like I strove here), to be aware of their strong limitations, and be suspicious 

of “ hypothesis-free” solutions (like FDR or permutation tests). The third 

recommendation would be data sharing ( Poline et al., 2012 ; Poldrack et al., 

2013 ). But recommendations should also be directed to developers of MRI 

tools. After decades of p -value diktat ( Meehl, 1967 ; Cohen, 1994 ; Kline, 

2004 ; Lambdin, 2012 ), psychologists may be at last ready to switch to 

Confidence Intervals, thanks in particular to the success of the pedagogical 

effort by Cumming (2012 , 2013 ). The challenge will be to apply the 

Confidence Interval logic to the huge and complex data sets of brain imaging

studies. 
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Footnotes 
1. ^ The mean of the log data is therefore also the median and the mode of 

the distribution of the transformed data; it is called the “ location” parameter

of the lognormal distribution. Most synesthesia studies of response times, 

RT, (e. g., synesthetic Stroop tests) computed the mean of non-transformed 

RT as summary measures; moreover, they often used invalid criteria to 

exclude so-called “ outliers,” values larger than 2 or 3 standard deviations; 

such definition of an outlier supposed the RT distribution to be Gaussian (and

even if it was the case this would not be a sufficient reason to exclude these 

values). Conclusions based on NHST and close to the decided significance 

threshold may well be sensitive to such incorrect procedures. Classical 

transformations for RTs are lognormal and inverse. “ Transformation” of the 
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data should be understood as the way to apply a lognormal or inverse 

model. 

2. ^ Note that the better model could be as simple as deciding of cutoff 

criteria, for example the exclusion of very short and very long response 

times; but this would not be a statistical criterion; the author would have to 

justify that too short or too long RTs are not possible values reflecting the 

task; and such exclusion criterion may well exclude values that were not 

detected as outliers. Here, we are not dealing with the cases when the “ 

true” distribution is known and yet estimators, like central tendency 

measures, may be biased because of a few extreme values; these cases may

be dealt with robust statistics (e. g., Pernet et al., 2012 ). 

3. ^ It would be convenient to be able to propose a value for ≪ too few ≫. 

Simmons et al. (2012) did request that “ authors must collect at least 20 

observations per cell.” This value was based on simulation, not on theoretical

grounds. It is also related to power and decision criteria based on NHST. 

Here, the question concerns the meaning of quantitative values. At the very 

beginning of this paper, I reminded that “ quantitative measures assume a 

model of the form: empirical observation = true value + error.” We learn in 

mathematics class that the Central Limit Theorem states that the sample 

mean follows a normal distribution when the sample is drawn randomly and 

the sample size is large enough, 30 being considered as large enough. 

However, I am not aware of any theoretical justification for this number. This 

may yet be a reasonable rule of thumb; based on my own experience, it is 
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very difficult to verify whether a distribution may be close enough to the 

normal distribution with fewer than 30 values. 

4. ^ Let's be very clear about that: I am not arguing against the use of small 

volume correction (SVC) or region of interest (ROI) analysis (ROI analyses do 

not need to use NHST: they may simply show Confidence Intervals). I am 

only pleading for awareness of the Null hypothesis as well as consistency. 

Small volume correction determines a t - or z -score above which voxels are 

considered as significant. When data is available this threshold should be 

applied to the whole brain. If voxels outside the small volume are above this 

threshold this means that the restriction of the family of tests was not 

justified (often studies reported such unexpected activation while 

maintaining the conclusion based on SVC). Likewise, ROI analyses should be 

completed by whole brain analyses to avoid pinhole conclusions. 

5. ^ A significant main effect of the variable “ subject” means that across-

subjects differences are not only due to sampling error. Possible interactions 

between the tested effect and “ subject” should then be examined. I do not 

know of any MRI study that considered subject variability that way. In the 

rare cases of fixed-effect analyses across-subject variability was simply 

factored out, implicitly making the very strong assumption that the 

measured variable could not be influenced by subject variability (as if a 

single “ supersubject” had run the whole experiment). 

6. ^ Estimation of the upper-tail distribution is by definition a one-tailed test.

This is correct for the statistics of interactions ( F -test), but testing 

differences between two populations requires performing two tests. Under 
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the Null hypothesis, and, therefore, not assuming the direction of the effect, 

all reported effects obtained at “ p = 0. 05” should, therefore, be 

reconsidered as “ p = 0. 10” for a two-tailed test. 

7. ^   http://www. fil. ion. ucl. ac. uk/spm/   

8. ^ The “ threshold-free cluster enhancement” statistics (TFCE, Smith and 

Nichols, 2009 ), implemented in FSL, somehow overcomes this problem, by 

proposing a single statistic. It however requires deciding on two parameters, 

instead on only one (cluster defining threshold). Values for these parameters

are proposed by default in FSL that are supposed to be appropriate for most 

studies ( Smith and Nichols, 2009 ). 

9. ^   http://fsl. fmrib. ox. ac. uk/fsl/fslwiki/   . 

10. ^ Usage of covariates in permutation tests for MRI seems rare. In 

addition, the correct estimation of the upper-tail distribution (for peak or 

cluster extent statistics) with Monte-Carlo stimulations or permutations 

requires a very large number of samples or permutations, especially for 

highly skewed statistics on cluster extent. 
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