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Introduction 
In the last decade, considerable interest in fractional differential equations 

has been stimulated due to their numerous applications in the areas of 

physics, biology, engineering, and other areas. Several numerical and 

analytical methods have been developed to study the solutions of nonlinear 

fractional partial differential equations, for details, refer to the work in [ 1 – 6

]. Fractional equations have enabled the investigation of the nonlocal 

response of multiple phenomena such as diffusion processes, 

electrodynamics, fluid flow, elasticity, and many more. Nowadays, fractional 

derivatives have gained a significant development to model some real life 

phenomena in the form of partial differential equations or the ordinary 

equations. Several researchers have performed the numerical simulation for 

fractional problems and revealed their applications in different directions 

include [ 7 – 12 ] and references therein. The exchange of heat, mass and 

momentum are considered to be the fundamental transfer phenomena in the

universe. The mathematical framework for heat and mass transfer are of 

same kind, basically encompass by advection-dispersion equation. In recent 

work many authors have demonstrated the depth of mathematics and 

related physical issues of advection-dispersion equations. Schumer et al. [ 13

] gave physical interpretation of space-time fractional advection-dispersion 

equation. Space-time fractional advection-dispersion equations are 

generalizations of classical advection-dispersion equations. The use of Hilfer-

Prabhakar fractional derivative operator is gaining importance in physics 

because of their specific properties. The objective of this paper is to derive 

the solution of Cauchy type generalized fractional advection dispersion 
https://assignbuster.com/analytical-solution-of-generalized-space-time-
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equation (18), associated with the Hilfer-Prabhakar fractional derivative. This

paper provides an elegant extension of results, given earlier by Haung and 

Liu [ 14 ], Haubold et al. [ 15 ], Saxena et al. [ 16 ], and Agarwal et al. [ 17 ]. 

Results Required in the Sequel 
In early 90s, Watugala [ 18 ] introduced Sumudu transform, which is defined 

as, 

A = { f ( t ) / ∃ M , τ i > 0 , i = 1 , 2 | f ( t ) | ≤ M e | t | τ j i f t ∈ ( − 1 ) j × 

[ 0 , ∞ ) } . ( 1 ) 

for all real t ≥ 0 the Sumudu transform of function f ( t ) ∈ A is defined as, 

S [ f ( t ) ; u ] = F ( u ) = ∫ 0 ∞ 1 u e − t u f ( t ) d t , u ∈ ( − τ 1 , τ 2 ) ( 2 ) 

inversion formula of (2), is given by 

S − 1 [ F ( u ) ] = f ( t ) = 1 2 π i ∫ γ − i ∞ γ + i ∞ e t u F ( u ) d u , ( 3 ) 

where γ being a fixed real number. 

Among others, the Sumudu transform was shown to have units preserving 

properties, and hence may be used to solve problems without resorting to 

the frequency domain. Further details and properties about this transform 

can be found in Belgacem [ 19 ], Belgacem et al. [ 20 ], and Katatbeh and 

Belgacem [ 21 ]. 

For a function u ( x, t ), the Fourier transform of with respect to x is defined 

by 
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F [ u ( x , t ) ] = u * ( η , t ) = ∫ − ∞ ∞ e i η x u ( x , t ) d x , ( − ∞ < η < ∞ ) 

( 4 ) 

and for the function u *(η, t ), inverse Fourier transform with respect to η is 

given by the formula 

F − 1 [ u * ( η , t ) ] = u ( x , t ) = 1 2 π ∫ − ∞ ∞ e − i η x u * ( η , t ) d η . ( 5 ) 

For more details of Fourier transform, see [Debnath and Bhatta [ 22 ]]. 

Mittag-Leffler function of two parameters is studied by Wiman [ 23 ] as 

E α , β ( z ) = ∑ n = 0 ∞ z n  Γ  ( α n + β ) , α , β ∈ C , R ( α ) > 0. ( 6 ) 

Mittag-Leffler function of three parameter introduced by Prabhakar [ 24 ] as 

E α , β γ ( z )  =  ∑ n = 0 ∞  Γ  ( γ + n )  Γ  ( γ )  Γ  ( α n + β ) z n n ! , α , β , γ 

∈ C ,  R ( α ) > 0. ( 7 ) 

Riemann-Liouville fractional integral (right-sided) of order α is defined in [ 25

] 

I a α ( u ( x , t ) ) = a R L D t − α ( u ( x , t ) ) = 1  Γ  ( α ) ∫ a t ( t − τ ) α − 1 u

( x , t ) d τ , ( t > a ) , R ( α ) > 0. ( 8 ) 

The right sided Riemann-Liouville fractional derivative of order α defined as 

a R L D t α ( u ( x , t ) ) = ( d d t ) n ( I a n − α u ( x , t ) ) ( R ( α ) > 0 , n = [ R

( α ) ] + 1 ) , ( 9 ) 

here [ x ] is the integral part of x . 
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Caputo [ 26 ], introduced fractional derivative of order R (α) > 0 as 

0 C D t α ( u ( x , t ) ) = { 1 Γ  ( m − α ) ∫ 0 t u m ( x , τ ) ( t − τ ) α + 1 − m d

τ , m − 1 < α ≤ m , R ( α ) > 0 , m ∈ N , ∂ m ∂ t m u ( x , t ) , i f α = m , ( 10 )

The Sumudu transform of (10) is given in [ 27 ], as 

S [ D 0 t α u ( x , t ) ; s ] = s − α u ¯ ( x , s ) − ∑ k = 0 m − 1 u ( k ) u ( x , 0 ) 

u α − k , ( m − 1 < α ≤ m ) ( 11 ) 

where ū( x, s ) is the Sumudu transform of u ( x, t ). 

Hilfer [ 28 ], gave a fractional derivative operator of two parameters μ and ν, 

which is generalization of (9) and (10), in the form 

D 0 0 + u , v ( u ( x , t ) ) = I t ν ( 1 − μ ) ∂ ∂ t ( I 0 + ( 1 − ν ) ( 1 − μ ) u ( x , t

) ) , 0 < μ < 1 and 0 ≤ ν ≤ 1 ( 12 ) 

For ν = 0, equation (12) reduces into (9) and for ν = 1, equation (12) reduces

into (10). 

The Sumudu transform of (12) is given in [ 29 ], as 

S [ D 0 0 + u , v ( u ( x , t ) ) ; s ] = s − α u ¯ ( x , s ) − ∑ k = 0 m − 1 s k − m

+ ν ( m − μ ) ∂ k ∂ x k ( I 0 + ( 1 − ν ) ( 1 − μ ) u ( x , 0 + ) ) , ( m − 1 < μ ≤ 

m ) . ( 13 ) 

Where the initial value term I 0 + ( 1 - ν ) ( 1 - μ ) u ( x , 0 + ) involves the 

Riemann-Liouville fractional derivative operator of order (1 − ν)(1 − μ) as t →

0 +. 
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A generalization of Hilfer derivate is given in [ 30 ], known as Hilfer-

Prabhakar derivative, is defined as: 

Let μ ∈ (0, 1), ν ∈ [0, 1], and let f . belongs to the set of locally integrable 

real valued functions i. e., f ∈ L 1 [ o , b ] , 0 < t < b ≤ ∞ , f * e ρ , ( 1 - ν ) , ω

- γ ( 1 - ν ) ( . ) ∈ A C 1 [ 0 , b ] . The Hilfer-Prabhakar derivative is defined by

D 0 ρ , ω . 0 + γ , μ , ν ( u ( x , t ) ) = E ρ , ν ( 1 − μ ) , ω , 0 + − γ ν ∂ ∂ t ( E ρ

, ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( x , 0 + ) ) , ( 14 ) 

where γ, ω ∈ R , ρ > 0, and where E ρ , 0 , ω , 0 + 0 f = f . We observe that 

(14) reduces to the Hilfer derivative for γ = 0. The Sumudu transform of this 

derivative operator (14) is given in [ 31 ], in the form: 

S [ D 0 ρ , ω . 0 + γ , μ , ν ( u ( x , t ) ) ; s ] = s − μ ( 1 − ω s ρ ) γ u ¯ ( x , s ) 

− s ν ( 1 − μ ) − 1 ( 1 − ω s ρ ) γ ν [ E ρ , ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 −

ν ) ( x , 0 + ) ] ( 15 ) 

For details of this derivative, refer to the work in [ 30 , 31 ]. 

Brockmann and Sokolov [ 32 ], defined a fractional Laplace operator as: 

Δ λ 2 = 1 2 cos ( π λ 2 ) { D − ∞ x λ + D x ∞ λ } , ( 0 < λ ≤ 2 ) , 

where the operators are defined by 

D − ∞ x λ ( u ( x ) ) = 1 k − λ ∫ − ∞ x u k ( u ) ( x − u ) λ + 1 − k d u , ( k = 

[ λ ] + 1 ) , 

and 
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D x ∞ λ ( u ( x ) ) = 1 k − λ ∫ x ∞ u k ( u ) ( x − u ) λ + 1 − k d u , ( k = [ λ ] +

1 ) . 

The Fourier transform of Δ λ 2 is given in [ 32 ], as 

F {  Δ λ 2 ( u ( x , t ) ) ; k } = − | k | λ F { u ( x , t ) } , ( 0 < λ ≤ 2 ) . ( 16 ) 

Inverse Sumudu transform of the following function is directly applicable in 

this sequel: 

In the complex plane C, for any R (α) > 0, R (β) > 0, and ω ∈ C 

S − 1 [ u γ − 1 ( 1 − ω u β ) − δ ] = t γ − 1 E β , γ δ ( ω t β ) . ( 17 ) 

Space-time Fractional Advection-Dispersion Equation 
Here we will find, the solution of the generalized space-time Advection-

Dispersion equation (18) under the conditions given in (19) and (20). Our 

main findings in the form of the following Theorem 3. 1 and Corollary 3. 2. 

Theorem 3. 1. Consider the generalized fractional order space-time 

advection-dispersion equation of Cauchy type 

D 0 ρ , ω , t γ , μ , ν ( u ( x , t ) ) = − η D x u ( x , t ) + ς  Δ  λ 2 ( u ( x , t ) ) , (

18 ) 

where λ ∈ (0, 2] x ∈ R, t ∈ R + , μ ∈ (0, 1), ν ∈ [0, 1], 

with initial condition, 

https://assignbuster.com/analytical-solution-of-generalized-space-time-
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E ρ , ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( x , 0 + ) = g ( x ) ,  γ , ω , x ∈

R , ρ > 0 , ( 19 ) 

and boundary condition 

lim | x | → ∞ u ( x , t ) = 0 , t > 0 , ( 20 ) 

where Δ λ 2 is the Laplace operator of fractional order λ, λ ∈ (0, 2]. The 

positive constant η represent the average fluid velocity and ς (positive 

constant) represent the dispersion coefficient. Subject to the above 

constraints, solution of equation (18), is 

u ( x , t ) = ∑ n = 0 ∞ t ν ( 1 − μ ) + n μ − 1 2 π ∫ − ∞ ∞ e − i k x g ( k ) ( i η 

k − ς | k | λ ) n E ρ , ν ( 1 − μ ) + n μ γ ( n − ν ) ( ω t ρ ) d k . ( 21 ) 

Proof: First, take the Fourier transform of equation (18) with respect to the 

space variable x , then 

D 0 ρ , ω , t γ , μ , ν ( u * ( k , t ) ) = η i k u * ( k , t ) − ς | k | λ u * ( k , t ) , 

( 22 ) 

u *( k, t ) represent Fourier transform of u ( x, t ). Again, apply Sumudu 

transform on (22) with respect to time variable t , we get 

s − μ ( 1 − ω s ρ ) γ u * ¯ ( k , s ) − s ν ( 1 − μ ) − 1 ( 1 − ω s ρ ) γ ν [ E ρ , 

( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( k , 0 + ) ] = i η k u * ¯ ( k , s ) − ς 

| k | λ u * ¯ ( k , s ) , ( 23 ) 

where S [ u ( k, t ); s ] = ū( k, s ). 

https://assignbuster.com/analytical-solution-of-generalized-space-time-
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Solve equation (23), by using conditions (19)-(20), we get 

{ s − μ ( 1 − ω s ρ ) γ − i η k + ς | k | λ } u * ¯ ( k , s ) = s ν ( 1 − μ ) − 1 ( 1 

− ω s ρ ) γ ν g ( k ) , ⇒ u * ¯ ( k , s ) = s ν ( 1 − μ ) − 1 ( 1 − ω s ρ ) γ ν { s − 

μ ( 1 − ω s ρ ) γ − i η k + ς | k | λ } g ( k ) . ( 24 ) 

On taking inverse Sumudu transform of equation (24), and after little 

simplification, apply result (17), it gives 

u * ( k , t ) = ∑ n = 0 ∞ ( i η k − ς | k | λ ) n g ( k ) t ν ( 1 − μ ) + n μ − 1 E ρ , 

ν ( 1 − μ ) + n μ γ ( n − ν ) ( ω t ρ ) . ( 25 ) 

Taking inverse Fourier transform of (25), get our required result (21). 

This completes the proof of the theorem 3. 1. 

On taking η = 0 , ς = i h 2 m in Theorem 3. 1, we arrive at: 

Corollary 3. 2. Consider the following one dimensional space-time 

Schrödinger equation of fractional order, for a free nature particle of mass m

is 

D 0 ρ , ω , t γ , μ , ν ( u ( x , t ) ) = i h 2 m  Δ  λ 2 ( u ( x , t ) ) , ( 26 ) 

where λ ∈ (0, 2], x ∈ R, t ∈ R + , μ ∈ (0, 1), ν ∈ [0, 1], 

with initial condition 

E ρ , ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( x , 0 + ) = g ( x ) , γ , ω ∈ R ,

ρ > 0 , ( 27 ) 

https://assignbuster.com/analytical-solution-of-generalized-space-time-
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and boundary condition 

lim | x | → ∞ u ( x , t ) = 0 , t > 0 , ( 28 ) 

where Δ λ 2 is same as we defined earlier and h = 6. 625 × 10 −27 ergs = 4. 

21 × 10 −21 Mev s is the Planck constant. Subject to the above constraints, 

solution of equation (26), is 

u ( x , t ) = ∑ n = 0 ∞ t ν ( 1 − μ ) + n μ − 1 2 π ∫ − ∞ ∞ e − i k x g ( k ) ( − i 

h 2 m | k | λ ) n E ρ , ν ( 1 − μ ) + n μ γ ( n − ν ) ( ω t ρ ) d k . ( 29 ) 

Proof: For obtaining the solution of Corollary 3. 2, we follow same procedure, 

as we used in the proof of Theorem 3. 1, and after little simplification, finally 

we obtain the desired result (29). 

Illustration 
Example 4. 1. To describe solute transport in aquifers, consider the following 

generalized fractional advection dispersion equation 

D 0 ρ , ω . t γ , μ , ν ( u ( x , t ) ) = − D x u ( x , t ) + u ′  Δ  λ 2 ( u ( x , t ) ) , 

( 30 ) 

with initial condition 

E ρ , ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( x , 0 + ) = e − x , 0 < x < 1 ,

t > 0 , ( 31 ) 

and boundary condition 

lim | x | → ∞ u ( x , t ) = 0 , t > 0 , ( 32 ) 
https://assignbuster.com/analytical-solution-of-generalized-space-time-
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where μ ′ = d ν ′ L and we consider a dimensionless parameter, called Peclet 

number, P e = 1 μ ′ where L is the packing length. The Peclet number 

determines the nature of the problem, that is, the Peclet number is low for 

dispersion-dominated problems and is large for advective dominated 

problems, d is the dispersion coefficient [ L 2 T −1 ] and ν′ is the Darcy 

velocity [ LT −1 ]. 

Our interest is in the solution of (30), for this we follow same procedure, as 

we applied in the proof of Theorem 3. 1, and after little simplification, finally 

we obtain 

u ( x , t ) = ∑ n = 0 ∞ t ν ( 1 − μ ) + n μ − 1 2 π ∫ − ∞ ∞ e − i k x g ( k ) ( i k 

− μ ′ | k | λ ) n E ρ , ν ( 1 − μ ) + n μ γ ( n − ν ) ( ω t ρ ) d k ( 33 ) 

Here u ( x, t ) represent the analytical expression of solute concentration and

g ( k ) = 1 2 π [ e - ( 1 + i k ) - 1 1 + i k ] . 

Example 4. 2. Consider the generalized fractional order space-time 

advection-dispersion equation 

D 0 ρ , ω . t γ , μ , ν ( u ( x , t ) ) = − D x u ( x , t ) + u ′  Δ  λ 2 ( u ( x , t ) ) , 

( 34 ) 

with the initial condition 

E ρ , ( 1 − ν ) ( 1 − μ ) , ω , 0 + − γ ( 1 − ν ) u ( x , 0 + ) = δ ( x ) , ( 35 ) 

Here δ( x ) is Dirac-delta function and boundary condition 
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lim | x | → ∞ u ( x , t ) = 0 , t > 0 , ( 36 ) 

The solution of (34) can be obtained by same technique as we applied in 

proof of Theorem 3. 1 

u ( x , t ) = ∑ n = 0 ∞ t ν ( 1 − μ ) + n μ − 1 2 π ∫ − ∞ ∞ e − i k x ( i k − μ ′ | 

k | λ ) n E ρ , ν ( 1 − μ ) + n μ γ ( n − ν ) ( ω t ρ ) d k . ( 37 ) 

Special Cases 
Some interesting special cases of Theorem 3. 1 are enumerated below: 

If we set γ = 0, in (14), then Hilfer-Prabhakar derivative reduces to Hilfer 

derivative (12), and the Theorem 3. 1 reduces to: 

(I). Consider the generalized fractional order space-time advection-dispersion

equation of Cauchy type 

D 0 t μ , ν ( u ( x , t ) ) = − η D x u ( x , t ) + ς  Δ  λ 2 ( u ( x , t ) ) , ( 38 ) 

where (0 < λ ≤ 2), x ∈ R, t ∈ R + , μ ∈ (0, 1), ν ∈ [0, 1], 

with initial condition 

I 0 + ( 1 − ν ) ( 1 − μ ) u ( x , 0 + ) = g ( x ) , x ∈ R , ( 39 ) 

and boundary condition 

lim | x | → ∞ u ( x , t ) = 0 , t > 0. ( 40 ) 
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For obtaining the solution of (38), follow same procedure as we used in the 

proof of theorem 3. 1, and use (13), after little simplification, obtain the 

following 

u ( x , t ) = t ν ( 1 − μ ) + μ − 1 2 π ∫ − ∞ ∞ e − i k x g ( k ) E μ , ν ( 1 − μ ) +

μ 1 ( ( i η k − ς | k | λ ) t μ ) d k . ( 41 ) 

Again, use convolution theorem of the Fourier transform to (41), then we get 

solution of (38), in term of Green's function as 

u ( x , t ) = ∫ − ∞ ∞ G ( x − k , t ) g ( k ) d k . 

Here Green's function is given as 

G ( x , t ) = t ν ( 1 − μ ) + μ − 1 2 π ∫ − ∞ ∞ e − i k x E μ , ν ( 1 − μ ) + μ 1 ( (

i η k − ς | k | λ ) t μ ) d k . 

If we set ν = 1 in (12), then Hilfer fractional derivative reduces to Caputo 

fractional derivative operator (10) and the equation (38), yields the 

following: 

(II). Consider the generalized fractional order space-time advection-

dispersion equation of Cauchy type 

D 0 t μ , ν ( u ( x , t ) ) = − η D x u ( x , t ) + ς  Δ  λ 2 ( u ( x , t ) ) , ( 42 ) 

where (0 < λ ≤ 2), x ∈ R, t ∈ R + , μ ∈ (0, 1), 

with initial condition 
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u ( x , 0 + ) = g ( x ) , x ∈ R , ( 43 ) 

and boundary condition 

lim | x | → ∞ u ( x , t ) = 0 , t > 0. ( 44 ) 

For obtaining the solution of (42), follow same procedure as we used in the 

proof of theorem 3. 1, and use (11), after little simplification, obtain the 

following 

u ( x , t ) = 1 2 π ∫ − ∞ ∞ e − i k x g ( k ) E μ , 1 1 ( ( i η k − ς | k | λ ) t μ ) d k

. ( 45 ) 

Again, use convolution theorem of the Fourier transform to (45) then we get 

solution of (42), in term of Green's function as 

u ( x , t ) = ∫ − ∞ ∞ G ( x − k , t ) g ( k ) d k . 

Here Green's function is given as 

G ( x , t ) = 1 2 π ∫ − ∞ ∞ e − i k x E μ , 1 1 ( ( i η k − ς | k | λ ) t μ ) d k . 

(III). On giving suitable value to the parameters involved in Theorem 3. 1, we

can obtained same results, earlier given by Haung and Liu [ 14 ], Haubold et 

al. [ 15 ], Saxena et al. [ 16 ], and Agarwal et al. [ 17 ]. 

Conclusion 
In this paper, we have presented a solution of generalized space-time 

fractional advection-dispersion equation. The solution has been developed in 

terms of Mittag-Leffler function with the help of Sumudu transform and 
https://assignbuster.com/analytical-solution-of-generalized-space-time-
fractional-advection-dispersion-equation-via-coupling-of-sumudu-and-fourier-
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Fourier transform. We can develop the efficient numerical techniques to find 

solution of various fractional partial differential equations arising in various 

fields by considering these analytic solutions as base. For future research, 

the methodology presented in this paper can serve as a good working 

template to solve any fractional advection-dispersion equations in higher 

dimensions. 
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