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1. Introduction 
A recent United Nations report projects that 60% of the world's total 

population will live in cities by the year 2030 ( U. N., 2018 ). This highly-

urbanized population will face vulnerability to water-related hazards in many 

ways. For example, the combined effect of natural changes and human 

intervention on the landscape can lead to flooding, drought, and morphologic

instabilities (e. g., stream erosion and instability, erosion, and sedimentation 

at structures) in and around urban areas, as well as deterioration of water 

quality, riverine ecology, and natural habitats ( Crossman et al., 2013 ; 

Krajewski et al., 2016 ). Because of the accelerated pace of anthropogenic 

activity, hazard frequency, and intensity is exacerbated requiring immediate 

delivery of science-based solutions for mitigation, resilience, and adaptation 

that can be quickly deployed in any hazard-prone area. Mitigating these 

urban water hazards is challenging for watershed management and the 

urban planning community ( Eriksson et al., 2015 ) due to the following 

hydro-complexities. First, these hazards exist in a variety of forms (e. g., 

floods, droughts, increased soil erosion, and water pollution) and are 

associated with multiple urban risks (e. g., property inundation and 

infrastructure failure, water shortage, landslide, and eco-habitat 

deterioration) ( Carson et al., 2018 ). Second, these urban water hazards 

may occur separately or in a multi-hazard chain ( Kappes et al., 2012 ; 

Komendantova et al., 2014 ), in which the occurrence of one hazard (e. g., 

urban flooding) may trigger another hazard (e. g., bank erosion and 

landslide). Third, the occurrences of different urban water hazards are 

connected through the flow of the water and watershed processes over a 
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range of spatial scales ( Souchère et al., 2010 ; Santelmann et al., 2019 ), 

pressing the need for multiscale mitigation strategies that target hazard 

drivers at both watershed and urban neighborhood scale ( Bertolotto et al., 

2007 ; Xu et al., 2019b ). 

Given these challenges, a holistic approach to water security is articulated 

by Ait Kadi and Arriens (2012) , as one that produces a world in which each 

community has access to enough water for social and economic 

development, and for ecosystems in and beyond those communities; and 

where those communities are protected from floods, droughts, landslides, 

erosion, and waterborne diseases ( Carson et al., 2018 ; Aboelnga et al., 

2019 ). Additionally, ensuring urban water security is a complex endeavor, as

it involves dynamic processes and requires the interaction and participation 

of multiple planning actors (stakeholders, resource managers, and policy 

makers) to safeguard the integrity and security of urban water systems and 

assets in a continuous, physical, and legal manner. Subsequently, these 

actors must formulate policies and make investments using robust, adaptive,

and accessible strategies that balance the socioeconomic and ecological 

benefits and urban sustainability with the cost of mitigation measures and 

management practices, and increase the resilience and preparedness of 

urban communities against extreme weather and natural disasters ( Medema

et al., 2014 ; Carson et al., 2018 ). 

Fundamentally, these methods must have the capability of identifying and 

assessing the risk of multiple interconnected urban water hazards 

simultaneously ( Kappes et al., 2012 ; Komendantova et al., 2014 ). Further, 
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these methods must include system-based techniques for providing 

generalized predictions and acquiring unseen data in order to obtain reliable 

and accurate depictions of both current and future states of water resources 

in both urban areas and their associated watersheds. The projections and 

updates provided through these techniques must be easy to interpret and to 

understand, so that researchers, decision makers, and communities can 

readily obtain useful insights that support the planning of urban water 

resources, including the mitigation of existing hazards and the prevention of 

future hazards ( Carson et al., 2018 ; Zaidi et al., 2018 ). 

To fulfill these management needs, comprehensive disaster management 

frameworks are proposed to promote the collaborative planning and 

management of water, land, and related resources ( Selin and Chevez, 1995

; Emerson et al., 2012 ). These frameworks are developed to reduce the risk 

of multiple water hazards equitably without compromising the sustainability 

of vital ecosystems. Examples of these frameworks include Integrated Water 

Resources Management (IWRM), Adaptive Management (AM), and the 

Ecosystem Approach (EA) ( Cardwell et al., 2009 ; Dörendahl, 2013 ; Palmer 

et al., 2013 ; Carson et al., 2018 ). In general, these frameworks entail a 

series of planning processes that can be categorized into four major stages (

Yu et al., 2018 ; Sun and Scanlon, 2019 ): 

1. Long-term planning and mitigation 

2. Early warning and prediction of hazards 

3. Rapid response and rescue 
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4. Recovery and restoration. 

Within the long-term planning and mitigation stage, we summarize here a 

list of common planning processes from several planning frameworks ( Yoe 

and Orth, 1996 ; NRCS, 2003 ; USEPA, 2012 ), and we address machine 

learning (ML) methods for application to these processes throughout the 

paper. These steps are as follows: 

1. Identification and assessment of multi-hazard risk in urban water systems.

2. Determination of the objectives of urban water planning and hazard 

mitigation. 

3. Inventory of useful data resources that can define urban water hazards 

and risks, indicate the performances of existing urban water systems, and 

reflect the current state of the urban water system and the watershed to 

which it pertains. 

4. Identification, evaluation, and selection of Best Management Practices 

(BMPs) from a variety of planning alternatives for water quality 

improvement, stormwater management, and erosion controls ( NRCS, 2011 ; 

USEPA, 2018 ). 

5. Evaluation of the performance and effectiveness of the implemented plan 

by examining information and monitoring data collected from pilot studies. 

6. Identification, evaluation, and selection of proposed modifications for 

ongoing or existing plans and implementation schedules based on the future 

scenarios of urban water. 
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Despite the usefulness of these planning directives, the implementation of 

these processes is sophisticated and faces both methodological and 

technical challenges. Methodological challenges are associated with the 

long-term planning and mitigation processes and include: (a) assessing the 

multi-hazard risk and vulnerability of a municipal water system ( Kappes et 

al., 2012 ; Jetten et al., 2014 ; Lambert, 2014 ), and (b) optimizing the 

selection of the BMPs from a variety of mitigation alternatives based on 

multiple criteria and objectives ( FHWA, 2000 ). Technical challenges are 

associated with the implementation of multiple planning processes. One of 

the major technical challenges is related to the discovery and integration of 

a large volume of interdisciplinary data and simulation models ( Adamala, 

2017 ), which is essential for supporting the multi-hazard risk assessment in 

the long-term planning and mitigation process, as well as for informing rapid 

response and rescue during a hazardous event. These information resources 

can provide data-driven and model-driven insights for informing the current 

and future state of urban water systems and watersheds. Another major 

technical challenge is related to the accurate and timely prediction of 

hazardous events, which help facilitate early warning and prevention of 

hazard. 

Conventionally, these challenges are approached using domain models and 

human justification of decision-makers, and therefore require computation- 

and labor-intensive efforts for coupling multiple models and investigating the

underlying physical processes of different hazards. In recent decades, 

developments in advanced ML techniques has offered a more time efficient 

method for overcoming these challenges in an intelligent manner. Many 
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review papers have enumerated ML and big data applications for enhancing 

various water resources management related applications and hydrological 

analysis ( Adamala, 2017 ; Holzbecher et al., 2019 ) and for mitigating a 

specific water hazard, such as flooding ( Mosavi et al., 2018 ), water pollution

( Haghiabi et al., 2018 ), and erosion ( Abdulkadir et al., 2019 ). In this paper,

we explore and discuss benefits and potential opportunities of the ML 

applications for enhancing the mitigation of multiple urban water hazards. 

Herein, we review a selection of successful studies that apply various ML 

techniques and hybrid modeling techniques (i. e., the fusion of ML methods 

with process-based domain models) to overcome challenges encountered by 

different planning processes for integrated urban water management. Hybrid

models are a mixture of inductive (data-driven) and deductive (process-

based) approaches ( Goldstein and Coco, 2015 ; Hajigholizadeh et al., 2018 ; 

Frame, 2019 ) and are referred to by Goldstein and Coco (2015) as the use of

empiricisms built from ML in process-based models. Other researchers (e. g., 

Karpatne et al., 2016 ) approach hybrid modeling from the opposite direction

—as “ theory-guided data science,” in which data analysis, given sufficient 

grounding in physical principles, can represent causative relationships 

among parameters. 

Additionally, we provide a vision for ways in which ML techniques can be 

used to facilitate different processes in the planning framework for the 

future. Different from previous review articles that focus on the machine 

learning application in the water management sector ( Sun and Scanlon, 

2019 ; Chen et al., 2020 ), we review innovative and application-ready 

machine learning solutions to facilitate urban water hazard mitigation from 
https://assignbuster.com/toward-urban-water-security-broadening-the-use-
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the practical aspect of addressing technical and methodological challenges 

in water resources and disaster management frameworks. The target 

audience of this paper includes watershed management authorities (WMAs), 

urban and regional planners, and research professionals in the water 

resources management sectors. To retrieve the relevant literature in this 

field that applies various ML techniques for urban water management, we 

conducted searches using tools such as Google scholar ( https://scholar. 

google. com ) and Scopus ( https://www. scopus. com ). Figure 1 shows the 

result of the query: (“ Random Forest” OR “ Artificial Intelligence” OR “ ANN”

OR “ Support Vector Machine” OR “ ANN” OR “ Artificial Neural Network” OR 

“ Neural Network” OR “ SVM” OR “ Machine Learning”) AND (“ water 

management” OR “ water resources management” OR “ watershed 

management” OR “ watershed planning” OR “ urban water systems” OR “ 

multi-hazard” OR “ water hazard” OR “ flood disaster” OR “ water pollution”)

AND [EXCLUDE (PUBYEAR, 2020)] . We executed the query for years 1999–

2019, and excluded year 2020. The above query retrieved a total of 46, 145 

documents from Scopus such that either article title, list of keywords or 

abstract satisfies the query. It is clear from Figure 1A that there is a 

significant growth in ML based approaches for water related areas such as 

water management and urban water hazards. Figure 1B shows the top four 

scientific journals which receive research on ML application to water related 

areas. The graph in Figure 1B also confirms the increasing trends in the 

applications of ML techniques in water management and hazards. 

FIGURE 1  
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Research trend showing increased application of machine learning 

techniques in water management and hazard (Copyright 2020 Elsevier B. V. 

All rights reserved. Scopus® is a registered trademark of Elsevier B. V).

(A)Documents per year during 1999–2019.(B)Documents per year source 

during 1999–2019. 

Among the thousands of literature identifies from the Scopus, we select a 

handful of studies that are either published in recent years or are most 

relevant to and practical for improving specific processes and steps in the 

generic hazard mitigation stages and long-term water planning frameworks 

that are discussed early in the introduction section. We also consider the 

diversity and novelty of the machine learning techniques during the selection

of studies for more detailed reviews and discussions. Based on the challenge

and planning process targeted by these studies, we divide our review here 

into the following sections. Section 2 reviews the predictive data analytics 

powered by various ML techniques that help planners predict water-related 

hazards (e. g., flood, drought, water quality, and soil erosion and sediment 

transport). Multiple applications of hybrid modeling are also discussed in this 

section. Additionally, a subsection reviewing innovative combinations of ML 

and remote sensing technologies for disaster management is included, as 

remote sensing technologies are increasingly applied for improving the 

discovery and extraction of useful information and features (e. g., land use 

and land cover, flood inundation extent, and reservoir storage from satellite 

imagery) that are critical for early warning of hazards and rapid response 

and rescue during hazardous events ( Hodgson et al., 2010 ). Section 3 

presents the ML applications for the identification and assessment of water-
https://assignbuster.com/toward-urban-water-security-broadening-the-use-
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related multi-hazard risks and vulnerability (e. g., building inundation, 

infrastructure failure, and economic loss) in urban water systems. In section 

4, we review a few case studies that utilize ML algorithms to optimize the 

selection of urban BMPs, which can improve long-term planning and 

mitigation and recovery and restoration processes. Finally, in section 5, we 

present our vision for the application of next-generation ML techniques to 

efficient generation of mitigation strategies in response to urban water 

hazards. ML methods and their performance as applied to each issue are 

summarized in Table 1 . 

TABLE 1  

Machine learning methods discussed in each section. 

2. Early Warning and Prediction of Urban Water Hazards 
The capability to predict timely and accurate occurrence, intensity, and 

frequency of natural hazards is essential to every planning process that 

develops disaster preparedness and response to ensure public safety and 

mitigate unfavorable consequences associated with hazardous events ( de 

Goyet et al., 2006 ). Traditionally, hydrological processes that contribute to 

water-related hazards have been analyzed using probabilistic modeling and 

physics based modeling approaches. The probabilistic approaches are 

devised to estimate the available stock over relatively short future time 

horizons ( Philbrick and Kitanidis, 1999 ). However, since the overall global 

climate is changing, rainfall data in any given area are non-stationary; thus 

the past does not necessarily predict the future, and the information given in
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recent data points may be more predictive than that of the data points from 

the more distant past ( Tay and Cao, 2002 ). Limitations of probabilistic 

methods to produce realistic and specific results for water security planning 

have required the employment of physics based models for these 

predictions. Modeling hazardous events using physics based approaches 

requires the theoretical understanding of the atmospheric, land, and human 

processes and their interconnections; along with dynamics behind multiple 

hazards. However, many physics based models are designed to simulate 

pristine watersheds where hydrology is assumed to behave in a “ pure” way,

untainted by human interference ( Joslin, 2016 ); therefore these physics 

based models are not suitable alone for predicting water-related hazards in 

urban watersheds. In addition, physics based models require large parallel 

machines and long periods of time for computation, neither of which may be 

available to water managers. Compared with the traditional modeling 

approaches, predictive data analytics powered by ML models can directly 

extract knowledge of natural disaster processes based on previous disaster 

occurrences and geo-environmental factors without prior knowledge ( Pham 

et al., 2016 ; Rahmati et al., 2019 ). Unlike physics based modeling 

approaches, ML techniques can provide a bridge between physics based and 

probabilistic models because they can highlight patterns, trends, and 

regularities in data without requiring detailed understanding of the physical 

processes ( Dibike and Solomatine, 2000 ; Rahmati et al., 2019 ), even when 

data are sparse, and with less complexity of construction and at relatively 

low computational cost ( Mekanik et al., 2013 ). 
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Based on the scientific reasoning behind them, ML applications for predicting

water-related parameters can be categorized either as inductive, whereby 

classifications are made based on statistical similarity in the hydrologic data 

directly; or deductive, whereby environmental variables (e. g., watershed 

characteristics) are analyzed as key drivers of hydrology to create 

classification ( Wagener et al., 2007 , 2010 ; Olden et al., 2012 ; Auerbach et 

al., 2015 ). Because the inductive approach requires abundant hydrologic 

data (although all watersheds are ungauged at some point with unavailable 

or insufficient measurements; Joslin, 2016 ) many studies have favored the 

deductive approach, which classifies rivers and watersheds based on readily 

available environmental data that reflect the main drivers of hydrologic 

processes ( Auerbach et al., 2015 ). Many researchers have utilized the 

deductive approach to relate stream condition (e. g., flow regimes, 

biodiversity, streamflow) with upstream watershed characteristics for 

different water resource management purposes ( Poff and Allan, 1995 ; 

Snelder and Biggs, 2007 ; Carlisle et al., 2008 ; Reidy Liermann et al., 2012 ; 

Rice et al., 2015 ). The rationale for deductive classification methods, such 

as hydrologic regionalization, environmental regionalization, and 

environmental classification is to group river hydrological characteristics by 

spatial representation (e. g., river basin, region, catchment) based on 

environmental, hydrological, physical, and climatic similarity ( Olden et al., 

2012 ) to develop reliable class and empirical relationships between 

predictor and watershed characterizations. 
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2. 1. Floods 
Long term processes of change, including changes in climate, shifts in 

population, and increases in urbanization, will likely increase future urban 

flood risk changing the assumptions upon which flood risk analysis and 

management has long been based ( Gangrade et al., 2019 ), and requiring 

new tools for risk assessment ( Milly et al., 2008 ). In order to understand 

how to predict floods and to mitigate their effects on urban areas using new 

tools, it is important to understand the events that lead to flooding. The 

locations and processes that contribute to floods include atmospheric 

processes, catchment-level floods, river flooding, and accumulation of water 

in flood-prone urban areas ( Merz et al., 2010 ). We discuss next the ML 

methods applied to each of these processes. 

2. 1. 1. Atmospheric Process Methods 

One ML method that is used to capture the underlying relationship between 

independent and dependent variables in atmospheric processes is Artificial 

Neural Networks (ANNs). ANNs are interconnected networks comprising an 

input layer, some number of hidden layers, and an output layer. Each layer 

contains several processors, or nodes, referred to as artificial neurons. The 

neurons in each layer are connected to the neurons in the previous and next 

layers, and they transfer information from one layer to the next. Synaptic 

weights and biases, along with activation functions applied to the input layer,

modulate the input signals sent from one layer to the next. The processed 

information is then sent as output to the connected neurons in the output 

layer ( Zounemat-Kermani et al., 2020 ). The power of ANNs is their ability to 

learn functional relationships, with minimal empirical error, between these 
https://assignbuster.com/toward-urban-water-security-broadening-the-use-
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variables. Additionally, the use of activation functions with ANNs allows them

to handle non-linear data effectively ( Zaidi et al., 2018 ). In fact, many water

related studies (e. g., Sahoo et al., 2017 ) using ANNs have shown that 

complex, reproducible, non-linear relationships exist among, for example, 

precipitation, temperature, streamflow, climate indices, irrigation demand, 

and groundwater levels. 

Another ML method that has been used for predicting average rainfall is a 

classification algorithm known as Support Vector Machines (SVM) (e. g., 

Mohanty and Mohapatra, 2018 ). This method, developed by Vapnik (1995) , 

is based on Structural Risk Minimization , which, rather than minimizing 

empirical error, as ANNs do, minimizes an upper bound of the generalization 

error ε. Dynamic Support Vector Machines (DSVMs), a modified version of 

the SVM, can be used to accommodate the structural changes in non-

stationary rainfall data because it uses, instead of a static ε and static 

regularization constants, an exponentially decreasing ε, and exponentially 

increasing regularization constants ( Cao and Gu, 2002 ) to allow room for 

analysis of changing patterns in the data. 

The probabilities of hydrological extreme events such as floods and drought 

are modeled using different distributions from those that predict future 

average values. Traditionally, these events and their return periods are 

estimated with distributions associated with Extreme Value Theory (e. g., 

Kao and Ganguly, 2011 ). However, ML techniques for anomaly detection 

have begun to be applied to hydrological extremes problems. Anomaly 

detection is the identification of outliers in the data, or items that differ 
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significantly from the overall trend of the data. Typically, anomalous data is 

related to issues such as measurement equipment failure or an extreme 

hydrological event. For example, Das and Parthasarathy (2009) used 

unsupervised spatio-temporal distance-based and neighborhood-based 

anomaly detection method with global climate data to identify extreme 

drought and heavy rainfall at specific locations. Characterization of short-

term and long-term future extreme events have also been made with 

anomaly detection using trends found in historical time series. For these 

analyses, techniques such as kernel-based (rule-based classification), 

window-based (examination of the data in smaller “ windows” in space or 

time), predictive, and segmentation (partitioning data into even smaller, 

possibly unequal, segments) algorithms are employed along with anomaly 

detection for locating extremely low and extremely high temperature and 

precipitation events ( Chandola et al., 2009b ). In the case of the research by

Sun et al. (2017) , a density-based method was applied to anomaly detection

in a hydrological time series. That is, the data were transformed to a 

piecewise linear representation through the important feature points of the 

data before mapping their slope, length, and mean to three-dimensional 

space for examination. 

2. 1. 2. Catchment-Level Methods 

Flood models at the catchment level analyze mainly issues of runoff 

generation and concentration leading to flood discharge. Because flood flow 

predictions are complex, non-linear, and not well-understood, ML may be 

required to evolve algorithms to derive characteristics of a particular flow. 

One way of evolving these algorithms is with the use of genetic 
https://assignbuster.com/toward-urban-water-security-broadening-the-use-
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programming, or genetic algorithms (GA), which produce, using routines 

imitating Darwin's “ natural selection,” algorithms directed to perform tasks 

defined by a set of training examples. Whigham and Crapper (2001) applied 

a type of genetic programming system to discover rainfall-runoff 

relationships for two meteorologically and topographically different 

catchments, one in Wales and one in Australia, and compared the results to 

those obtained with a traditional deterministic lumped parameter model. 

While both models did well when rainfall and runoff were correlated, the 

genetically programmed model performed better on the more poorly 

correlated data because it was allowed not to assume any underlying 

relationships, only to demonstrate its “ fitness” to solve the problem. 

Guidolin et al. (2016) used a two-dimensional cellular-automata-based model

employing simple transition rules and a weight-based system to model 

catchment-level runoff. This diffusive-like method is designed to work with 

various general grids (rectangular, hexagonal, triangular) and with different 

neighborhood types (e. g., Moore or von Neumann). It also allows for model 

parallelization to increase its efficiency in large compute environments. To 

propagate a flood using this method, ratios of water to be transferred from a 

central cell to downstream neighbor cells are calculated using a weight-

based system, with water volume transferred limited by Manning's formula (

Manning et al., 1890 ), and the critical flow equation. Water velocity and an 

adaptive time step are evaluated within a larger updated timestep. The 

results of the emergent behavior of this process shows good agreement with 

much more computationally intensive physical methods. 
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2. 1. 3. Machine Learning for Analyzing River Floods 

Flood hazard in rivers can be characterized by the probability and intensity 

of large river flows and their consequent inundations, and it depends on the 

atmospheric and catchment processes preceding river flood generation (

Merz et al., 2010 ). In fact, river floods are generally defined in hydrological 

terms by their water level or amount of discharge. Thus, Shamseldin (2010) 

explore the use of ANN for forecasting discharge from the Blue Nile river in 

Sudan. The type of neural network they chose was that of a multi-layer 

perceptron (MLP) feedforward network, a non-linear input–output model 

consisting of a network of interconnected neurons, or computational units, 

linked together by connection pathways. The input layer is essentially a set 

vectors of independent variable values, whereas the output layer is a set of 

possible dependent variable vectors of values. Between these two layers is a

hidden layer containing an unknown number of neurons which are usually 

estimated by a trial-and-error procedure based on a mathematical non-linear

transfer function ( Shamseldin, 2010 ). Input variables in this case were 

weighted historical rainfall estimates, weighted seasonal rainfall estimates, 

and seasonal expectation of discharge; and the output variables were the 

river discharge values. Results showed strong correlation with observations 

for the river. 

In addition to the multilayer perceptron ANN approach, other types of ANNs 

have been used to analyze river floods. For example, Tayyab et al. (2016) 

applied and compared three different types of ANNs to predict stream 

discharge for the Jinsha River Basin in China. The methods included 

feedforward back propagation neural networks (FFBPNN), generalized 
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regression neural networks (GRNN), and radial basis function neural 

networks (RBFNN). The differences among these approaches lies in the 

hidden layer functions and activation functions that are applied to the 

problem. Badrzadeh et al. (2013) expanded on these ANN approaches by 

coupling wavelet (transforms that identify trends in the data normally not 

revealed by signal analysis approaches and also help to de-noise a dataset) 

multi-resolution analysis and adaptive neuro-fuzzy interface system (ANFIS) 

techniques (integration of neural networks and fuzzy logic) as preprocessing 

techniques to the ANN and show improved daily river flow forecasting over 

the use of ANNs alone, especially for long lead times. Mosavi et al. (2018) 

demonstrated the application of ANNs, neuro-fuzzy, SVM, and support vector 

regression (SVR) (SVM with regression only), in forecasting river floods and 

predicting the runoff hydrograph. The robustness of these techniques was 

evaluated and was found to be in good agreement with the observations. 

2. 1. 4. Methods for Addressing Flood-Prone Urban Areas 

Building resilience to natural disasters is one of the most pressing challenges

for achieving sustainable urban development in flood-prone regions ( Chang 

et al., 2019 ). River flooding in urban areas can cause high levels of damage, 

and while a relationship between hydrological characteristics and damaging 

floods may exist, knowing about an area's hydrological characteristics does 

not always indicate understanding of its vulnerability to damaging floods (

Pielke, 2000 ). This understanding is imperative for hazard-mitigation 

planning for urban areas because these areas' responses to rainfall extremes

tend to be faster than those for natural surfaces ( Rodriguez et al., 2003 ). 

Thus, strategies for flood mitigation in these areas such as detention ponds, 
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soakaways, permeable concrete, and green spaces, or upstream solutions 

such as river training and construction of dams and levees ( Shamseldin, 

2010 ) should be evaluated and implemented based on a thorough 

understanding of flood risks and responses of the area. For example, for 

predicting urban floods for the city of Pattani south of Thailand, Noymanee et

al. (2017) examined the entire Pattani basin, which includes two dams for 

water management: a diversion-type, Pattani Dam, and a hydropower plant, 

Bang Lang Dam. It is known that the most frequent floods are a result of 

overflow from flash flooding of the Pattani Dam rushing toward the city. The 

researchers acknowledge that a comprehensive approach to controlling 

floods in the area must include both structural and non-structural measures 

such as the development of improved technology for data management of 

the drainage network, and an increase in the sensors' frequency and extent 

of coverage. Thus, Noymanee et al. (2017) tested five different ML methods 

using open data pertaining to the area hydrology, the dam structures, the 

drainage network, and the technological components of the dams to explain 

the occurrence of extreme floods estimating dam water levels and 

cumulative precipitation amounts to forecast flood peaks in the urban area. 

The five methods tested included an ANN, Bayesian linear regression 

(statistical inference using Bayes' theorem), boosted decision tree regression

and decision forest regression (both similar to random forest analysis 

discussed in section 2. 2. 1) and linear regression. Results showed the lowest

error and highest correlation with the observations in the urban area from 

the Bayesian linear regression. This favorable result for that method may 
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have occurred because it was informed by probability distributions drawn 

from prior data. 

Often, in order to understand and manage risks of urban flooding beyond 

purely hydrological considerations, integration of decision support tools with 

predictive models is instructive. For example, one study ( Rozos, 2019 ), 

combined a hydrological model, a demand management model called a 

network flow programming model (NFP), and an Feed Forward Neural 

Network (FFNN) to simulate a water supply system in Athens, Greece. The 

NFP optimizes and simulates the operation of a water supply system given 

hydrological inputs. FFNNs are the simplest type of ANN, whereby 

information moves in a forward direction from input nodes to the hidden 

layer to the output nodes ( Mosavi et al., 2018 ) and they lend themselves to 

multi-model coupling. In this case, the NFP used synthetic data of a length 

capable of capturing the risk of each policy. Then the penalty functions of 

the NFP were selected to reflect the operating policies with different levels of

risk acceptance. This process provided a large set of training data over a 

long period of time that was then used as input to the FFNN. This process 

allowed optimal decisions to be identified and made for the Athens system. 

2. 1. 5. Predicting Indirect Flood Effects in Urban Areas 

Indirect flood effects are those that cause damage to assets outside the 

flooded area. These assets can be physical, economic, social, or ecological in

nature with impacts lasting for days, months, or even years after a large 

flooding event ( Costello et al., 2019 ). In order to evaluate the extent of 

these effects, multi-agent-based simulations have been applied. Agent-based
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models simulate actions and interactions of autonomous agents, which can 

be individual actors or groups of actors, to assess the effects of these 

individual actions on the system as a whole. In one study ( Yang S. et al., 

2019 ), reinforcement learning, which rewards software agents for actions 

taken to maximize their cumulative reward, was used with the agent-based 

simulation for the optimization of post-disaster recovery for both individual 

companies and supply chains for Tokyo, Japan. That study showed improved 

indirect damage estimation accuracy and mitigation potential over statistical

methods and rough empirical models. 

2. 2. Drought 
Drought is a prolonged period of precipitation deficit that may occur at 

varying spatiotemporal scales ranging from local to regional, lasting for 

weeks, months, multiple years, or even decades ( Pendergrass et al., 2020 ; 

Hao et al., 2018 ). Drought may be exacerbated by extreme heat, soil 

moisture deficit, land atmosphere feedbacks, sea surface temperature 

anomalies, atmospheric circulation, and human activities such as land use 

and land cover changes and increased water demand ( Cook et al., 2007 ; 

Dai, 2011 ; Kam et al., 2014 ). Droughts are high-impact weather hazards 

that affect agriculture, economy, ecosystem, water supply, and human lives (

Hao et al., 2018 ). Over the past two decades, the total cost associated with 

drought is estimated to be billions of dollars ( Huntingford et al., 2019 ). In a 

warming climate, the duration and intensity of drought is further projected to

increase ( Pagán et al., 2016 ; Pendergrass et al., 2020 ). Therefore, an 

advancement in the capability of timely prediction and development of early 
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warning systems is crucial for drought risk management and strategic 

planning. 

2. 2. 1. Advancement in the Use of Machine Learning Techniques for Drought Prediction 

Drought is a complex weather hazard ( Van Loon, 2015 ); therefore, a 

comprehensive understanding of the physical mechanisms that drive 

drought is essential to improving drought prediction ( Huang et al., 2016 ). 

Numerous studies have been conducted to understand the intricate physical 

processes that lead to the extreme low moisture conditions of drought. 

Scientists have employed dynamical methods that involve climate and 

hydrological model simulations, statistical models using a suite of predictors 

and drought indices, as well as hybrid models for drought prediction (

Fernández et al., 2009 ; Dutra et al., 2014 ; AghaKouchak, 2015 ; Mo and 

Lyon, 2015 ; Wood et al., 2015 ; Hao et al., 2017 , 2018 ). 

During the last decade, there has been an increase in the use of ML 

techniques to improve drought predictability ( Hao et al., 2018 ). For 

instance, random forest ML algorithms have been increasingly used in 

drought prediction studies ( Park et al., 2016 ; Kuswanto and Naufal, 2019 ; 

Rahmati et al., 2020 ). Random forests are extensions of decision tree 

analysis that start with classification trees–types of decision trees that can 

be grown together as a “ forest” in a computational system. They provide 

highly accurate classification and characterization of complex predictor 

variable interactions while maintaining flexible analytical technique selection

( Allen et al., 2018 ). Random forests also provide the capability to deal with 

the issue of overfitting and multicollinearity as compared to the traditional 
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linear regression models ( Konapala and Mishra, 2020 ). Park et al. (2016) 

employed random forests, boosted regression tree, and Cubist ML algorithms

(rule-based model trees on which the terminal leaves contain linear 

regression models) for meteorological and agricultural drought monitoring 

using 16 remote sensing based drought factors over arid and humid regions 

in the United States. Their findings suggest that among the three 

approaches, random forests provide the best performance for Standardized 

Precipitation Index (SPI) prediction. Similarly, Kuswanto and Naufal (2019) 

found the performance of random forests to be optimal when using SPI 

derived from Modern-Era Retrospective analysis for Research and 

Applications (MERRA-2) for drought prediction over the East Nusa Tenggara 

Province in Indonesia. A more recent study, Rahmati et al. (2020) compared 

the performance of six different ML techniques [classification and regression 

trees (CART), boosted regression trees (BRT), random forests, multivariate 

adaptive regression splines (MARS), flexible discriminant analysis (FDA), and 

SVM] for mapping agricultural drought hazard in the southeast region of 

Queensland, Australia. Similar to Park et al. (2016) and Kuswanto and Naufal 

(2019) , they found that random forests had the best goodness-of-fit and 

predictive performance among the six models. Zaniolo et al. (2018) 

contributed to the FRIDA (FRamework for Index-based Drought Analysis) for 

the automatic design of basin-customized drought indexes across different 

types of basins by applying a ML-powered variable selection algorithm. The 

algorithm is based on a Wrapper for Quasi-Equally Informative Subset 

Selection (W-QEISS), which applies a multi-objective evolutionary algorithm 

to identify Pareto-efficient subsets of variables. This technique is able to 
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maximize the wrapper accuracy, minimize the number of selected variables, 

and optimize relevance and redundancy of the subset. As a result, the 

framework is able to build an index that represents a surrogate of the 

drought conditions in a basin through the computation and combination of all

the relevant available information regarding the water cycle in the system 

identified using the feature selection algorithm. 

ANN ML techniques (see section 2. 1. 1) have also been used for drought 

forecasting ( Mishra et al., 2007 ; Morid et al., 2007 ; Belayneh and 

Adamowski, 2012 ; Belayneh et al., 2014 ). Belayneh et al. (2016) coupled a 

wavelet transform data processing technique (see section 2. 1. 3), 

bootstrapping and boosting ensemble approaches with ANN and Support 

Vector Regression (SVR) (see section 2. 1. 1) for drought prediction in the 

Awash river basin of Ethiopia. Bootstrapping is a resampling technique with 

replacement that was used to create bootstrap ANN and SVR ensemble 

models to reduce model prediction uncertainty. Boosting techniques improve

the performance of an algorithm by producing a series of models focusing on

training cases that were not well predicted previously. The researchers found

that the coupled models showed an improved performance and provided 

more robust SPI predictions as compared to either of ANN or SVR alone. 

ANN models can be limited by model interpretability, local minima traps, and

computational efficiency issues. Thus, alternatively, XGBoost has been 

gaining popularity due to its high execution speed and improved model 

performance as compared to other ML techniques such as SVM, ANN, and 

random forests ( Fan et al., 2018 ; Shimoda et al., 2018 ; Zhang R. et al., 
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2019 ). XGBoost is an ensemble technique that implements a gradient boost 

decision tree algorithm to produce an ensemble of weak prediction models. 

Models are subsequently added to improve errors until an optimum 

performance is achieved. Zhang R. et al. (2019) compared the performance 

of XGBoost with a traditional statistical model and an ANN model for 

Standardized Precipitation Evapotranspiration Index (SPEI) prediction with a 

lead time of 1–6 months for 32 weather stations in the Shaanxi Province of 

China. In their study, the XGBoost model showed the best performance for 

SPEI prediction, achieved highest user's and producer's accuracies and was 

much faster than the ANN model. 

2. 3. Water Quality 
The deterioration of water quality in both groundwater and surface water has

become a major concern causing negative impacts on human well-being, 

eco-systems, water supply, and infrastructure around the world ( UN, 2012 ; 

Khan and See, 2016 ). According to United Nations (UN), more than 880 

million people are living in water scarcity without adequate safe drinking 

water, and 2. 6 billion people lack access to basic sanitation due to water 

shortage ( UN, 2010 , 2012 ). Effective management of water supply systems

and watersheds often requires reliable and timely approaches for predicting 

water quality and forecasting future water quality trends ( Wang et al., 2017

; Bui et al., 2020 ). Based on established water quality standards ( Nowell 

and Resek, 1994 ; EPA, 2012 ), water quality is often estimated using a 

combination of water quality parameters that reflect the physical, biological, 

or chemical characteristics of the air, watershed hydrology, soils, and 

sediment transported in the aquatic system ( Hou et al., 2013 ; EPA, 2019 ). 
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Developing accurate and timely prediction of water quality is a challenging 

effort. The traditional approaches utilize water quality models for analyzing 

and predicting water quality parameters. Most of these models consist of 

mathematical representations of physical mechanisms that determine (a) 

the fate, transport, and degradation of pollutants within a water body, and 

(b) the movement of pollutants from land-based sources to a water body (

Refsgaard and Henriksen, 2004 ). Despite their usefulness for modeling 

specific scenarios, water quality models can only provide one line of 

evidence that serves as an imperfect approximation of reality ( Kebede, 

2009 ). This is because of process complexity of the water quality problems 

in that (1) there is a large number of interconnected multi-domain processes 

(e. g., physical transport, hydrological, chemical, and biological); and that (2)

many underlying mechanisms that may affect water quality are still 

unknown. Complex water quality models often involve time-consuming and 

labor-intensive processes ( Ahmed et al., 2019 ), rendering them costly and 

ineffective for supporting many time-critical water resources management 

tasks that have limited budgets. Compared with process-based (mechanistic)

models, the newly emerging data-driven approaches for water quality 

predictions often rely on a large volume of water quality and hydrological 

data from various sources ( Khan and See, 2016 ). Examples of these data 

sources include the United States Geological Survey (USGS) online resource

—National Water Information System (NWIS) and the United States 

Environmental Protection Agency's (USEPA) STORET Data Warehouse ( Beran

and Piasecki, 2008 ). These analyses normally consider the combined effect 

of multiple water quality parameters, such as ammoniacal nitrogen (NH3-N), 
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suspended solid (SS), dissolved oxygen (DO), pH, and salinity. As many of 

these parameters are dynamic and affected by natural watershed hydrology,

their influences on water quality may vary across watersheds ( EPA, 2019 ). 

In different watersheds, some parameters may have greater and more 

noticeable influences on water quality than others ( Khan and See, 2016 ). In 

response to this challenge, the water quality index (WQI) has been proposed 

as a representation of several water quality variables simultaneously 

considered. However, calculating WQI using traditional approaches 

consumes time and is often filled with errors during derivations of sub-

indices ( Bui et al., 2020 ). To address these limitations and improve water 

quality analysis and prediction, researchers have applied many ML 

techniques ( Khan and See, 2016 ; Ahmed et al., 2019 ; Bui et al., 2020 ), as 

well as developed a few hybrid approaches that combine various traditional 

methods with ML techniques ( Taskaya-Temizel and Casey, 2005 ; Wang et 

al., 2017 ). We discuss the application of some of these approaches next. 

Palani et al. (2008) and Singh et al. (2009) applied ANN models to predict 

river and coastal water quality in India and Singapore respectively. Each 

found that the ANN-computed values of water quality indicators were in 

close agreement with their respective measured values in the river water. 

García-Alba et al. (2019) developed an ANN model to estimate bathing water

quality in estuaries and found that ANN models are able to estimate 

Escherichia coli concentrations comparable to those extimated by process-

based models, and at much lower computational cost. In more recent 

studies, combinations of multiple ML and data analytic techniques applied to 

a problem are preferred to analysis with a single ML technique. For example, 
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Lu and Ma (2020) proposed coupling two ML models to improve water quality

prediction: XGBoost (section 2. 2. 1), and a random forest algorithm (section 

2. 2. 1). They found that while the hybrid XGBoost model performed better 

for PH values, turbidity, and fluorescent dissolved organic matter predictions,

and the random forest model performed better for temperature, dissolved 

oxygen, and specific conductance prediction; the combined performance of 

the two models was the best for optimizing the calculation of a water quality 

index. Barzegar et al. (2020) applied two standalone deep learning (DL) 

models, a convolutional neural network (CNN), an ANN with a convolutional 

activation function, and the long short-term memory (LSTM) model, which 

includes feedback in addition to feedforward networks, and a combined 

CNN–LSTM model to predict two water quality variables, dissolved oxygen 

(DO; mg/L), and chlorophyll-a (Chl-a; μ/ L ), in the Small Prespa Lake in 

Greece. Assessment of the model performance using statistical metrics, 

showed that LSTM outperformed the CNN model for DO prediction, but the 

standalone DL models yielded similar performances for Chl-a prediction. The 

combined CNN–LSTM model, however, outperformed the standalone models 

for predicting both DO and Chl-a. By coupling the LSTM and CNN models, 

both the low and high levels of water quality parameters were successfully 

captured, particularly for the DO concentrations ( Barzegar et al., 2020 ). 

Similar successful approaches involving the coupling of multiple ML 

algorithms for the short-term prediction of water quality parameters include 

Li et al. (2018) and Lu and Ma (2020) . Bui et al. (2020) applied four 

standalone algorithms [random forests and three variants: M5P (similar to 

Cubist, section 2. 2. 1), random tree (RT), reduced error pruning tree (REPT)],
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and developed 12 algorithm combinations among these methods to predict 

water quality in northern Iran. They found fecal coliform concentrations to 

have the most effect and total solids to have the least effect on the 

predictions. Finally, Read et al. (2019) integrated theory with state-of-the-art 

ML techniques to improve predictions of water quality related parameters 

guided by physical laws. The study presented a use case for a Process-

Guided Deep Learning (PGDL) hybrid modeling framework for predicting 

depth-specific lake water temperature, which serves as an important water 

quality parameter. The PGDL consisted of three primary components: a deep

learning (many-layered neural network) model with temporal awareness 

(long short-term memory recurrence), theory-based feedback (model 

penalties for violating conversation of energy), and model pre-training to 

initialize the network with synthetic data (water temperature predictions 

from a process-based model) ( Read et al., 2019 ). Through the use case the 

researchers demonstrated that the integration of scientific knowledge into 

deep learning tools shows promise for improving predictions of many 

important environmental variables. 

2. 4. Soil Erosion and Sediment Transport 
Erosion and sedimentation are naturally occurring processes that include the

detachment, transportation, and deposition of soil particles through the 

action of wind, water, and ice ( NRCS, 2008 ). However, excessive soil 

erosion and sedimentation rates are results of anthropogenic activities (e. g.,

urbanization and agriculture) where soil surfaces are exposed and initially 

not revegetated (e. g., construction sites). Without proper mitigation, erosion

and sedimentation in urban areas can cause a series of adverse impacts to 
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the environment and urban areas ( Guy, 1970 ; Hewett et al., 2018 ), which 

include water pollution, degradation of aquatic habitat, infrastructure 

damage (e. g., sediment blockage in urban waterways, storm sewer, and 

stream crossings, as well as silting of roadways, utility supply networks, and 

fences), increase in water-treatment costs, and stream bank instabilities (e. 

g., gullying and land-slides) ( NRCS, 2008 ). 

2. 4. 1. Machine Learning Techniques for Sediment Research 

To tackle sediment-related problems, the predictions of sediment production 

and transport are required to inform urban planning and watershed 

management communities of the major source of sediment and erosion-

prone areas. Conventionally, these predictions are addressed through a wide

variety of erosion and sediment transport models ( Merritt et al., 2003 ; 

Nearing et al., 2005 ). Despite the usefulness and maturity of these 

traditional approaches, the prediction of sediment-related parameters (e. g., 

soil losses, in-stream sediment load, and sediment delivery ratio) is still 

challenging because of the following model limitations: (a) running many 

physically-based erosion and sediment transport models are time- and 

resource-intensive, and requires the consideration of more physical 

processes in addition to the hydrological process making models are less 

applicable to sediment-related predictions in large watersheds and areas (

Abaci and Papanicolaou, 2009 ); (b) most models are designed to simulate a 

specific type of erosion (e. g., rill, gully, and stream bank erosion) and 

sediment transport (e. g., suspended load and bed load) ( Wischmeier and 

Smith, 1978 ; Ganasri and Gowda, 2015 ), while sediment-related problems 

in urban areas and urban waterways often entail multiple types of erosions 
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and sediment transport therefore requiring the integration of a variety of 

models; and (c) most erosion and sediment transport models do not cover 

sediment transport and deposition at man-made structures ( Rowley, 2014 ) 

in urban areas. A comparative study conducted by Liang et al. (2019) 

showed that data-driven models can effectively inform and complement the 

simulations conducted with physics based models. Currently, there are many

studies that utilize various ML methods to address various issues in sediment

research. We summarize a list of example studies by their application areas 

and their applied ML methods: 

1. Modeling sediment transport 

(a) Artificial neural networks ( Tayfur, 2002 ; Lin and Montazeri Namin, 2005 ;

Bhattacharya et al., 2007 ; Yang et al., 2009 ), 

(b) Adaptive-network-based fuzzy inference system: ( Lin and Montazeri 

Namin, 2005 ; Bakhtyar et al., 2008 ; Wieprecht et al., 2013 ), 

(c) M5 Model trees ( Onderka, 2012 ; Goyal, 2014 ). 

2. Predicting sediment load 

(a) Random forests ( Francke et al., 2008 ; López-Tarazón et al., 2012 ), 

(b) Genetic algorithms ( Altunkaynak, 2009 ; Yadav et al., 2019b ), 

(c) Unsupervised techniques ( Ahmed et al., 2018 ; Xu et al., 2019a ). 

3. Predicting soil erosion 
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(a) Tree-based ML methods (e. g., random forest, gradient boosted 

regression tree, naïve Bayes tree, and tree ensemble models) ( Rahmati et 

al., 2017 ; Hosseinalizadeh et al., 2019 ), 

(b) Support vector machine (SVM) ( Pourghasemi et al., 2017 ; Mustafa et al.,

2018 ), 

(c) Artificial neural networks ( Abdollahzadeh et al., 2011 ; Pourghasemi et 

al., 2017 ; Rahmati et al., 2017 ). 

4. Sediment-related impacts on urban infrastructure 

(a) Random forest ( Xu et al., 2019a ), 

(b) Adaptive-Network-based Fuzzy Inference System (ANFIS) ( Azamathulla et

al., 2011 , 2012 ). 

In general, erosion and sediment research is a broad subject that provides 

numerous opportunities for ML applications. By reviewing the above-

mentioned example studies, we have summarized that (a) compared with 

traditional erosion and sedimentation transport models, ML methods are 

easier and cheaper ( Cigizoglu, 2002 ; Tayfur and Guldal, 2006 ; Yadav et al.,

2019a ), and can be readily applied to solve complex sediment problems that

entail human factors and multiple erosion and sediment transport processes 

( Xu et al., 2019a ), (b) ML models that rely on field data generally produce 

better and more reliable results than those obtained from experimental 

models ( Kitsikoudis et al., 2014 ). 
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2. 4. 2. Hybrid Modeling Techniques for Sediment Research 

In addition to its application to previously described hydrological studies, 

hybrid modeling has also been applied to sediment research ( Merritt et al., 

2003 ; Hajigholizadeh et al., 2018 ). Through the fusion of inductive data-

driven models and deductive process-based models ( Goldstein and Coco, 

2015 ), hybrid models inherit the strengths of both the ML methods and 

physics-based models in a single model that has an increased performance 

in terms of speed ( Babovic et al., 2001 ; Hall, 2004 ), accuracy (

Krasnopolsky and Fox-Rabinovitz, 2005 ; Goldstein and Coco, 2015 ), and the

capability of addressing soil-water problems with complex and multi-scale 

physical processes ( Hajigholizadeh et al., 2018 ). An additional benefit of 

hybrid modeling is that ML models and data can be directly coupled to 

improve the calibration of process-based models ( Knaapen and Hulscher, 

2003 ; Ruessink, 2005 ; Mekonnen et al., 2012 ). Hajigholizadeh et al. (2018) 

summarized a table of hybrid modeling applications that integrate statistical 

models with process-based models in sediment research including: 

• Modified Morgan, Morgan and Finney (MMMF) ( Morgan et al., 1984 ), 

• Sediment river network model (SEDNET) ( Prosser et al., 2001 ), 

• Erosion Assessment Tool of MIKE BASIN & MILW (SEAGIS) ( DHI, 2003 ), 

• Automated Geospatial Watershed Assessment (AGWA) ( Scott et al., 2002

). 
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2. 5. Application of Machine Learning to Remotely-Sensed Data for Water 
Hazard Prediction and Mitigation 
Remotely-sensed (RS) data, due to its wide spatial coverage, provides a 

synoptic view of disaster affected areas. It is also frequently available during 

the disaster response phase providing a temporal overview of the disaster 

situation. Due to the recent advancements in satellite sensor technology, RS 

data is now available at various spatial resolutions (i. e., low, medium, and 

high) affording local, regional, and global coverage, and various spectral 

resolutions, from a few spectral bands in optical sensors to several hundreds 

of spectral bands in hyperspectral sensors. Additionally, advancements in 

the RS field have resulted in a continuous growth in Earth Observation (EO) 

data archives. Due to these characteristics, RS data is a potential data 

source for each stage during hydrological pre-event planning and post-event 

countermeasures ( Ge et al., 2020 ). Nevertheless, it is not always possible 

and is often dangerous to conduct ground surveys of disaster affected areas.

Often the disaster destroys the transportation and communication facilities 

making ground-based survey impossible. In such time-critical situations, the 

proper selection of the sensor type, spatial resolution, and satellite revisit 

period is crucial, as pre-disaster and ancillary data can provide a wide 

coverage of the disaster affected area ( Ge et al., 2020 ). Despite these 

occasional limitations, various powerful approaches have been developed 

recently in the context of advanced ML and computer vision to exploit the 

wealth of information that can be found in RS data to address various urban 

water hazards related events ( Kurte et al., 2017 ). 
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2. 5. 1. Flood Management 

Over the last two decades, RS data have successfully contributed to various 

stages of flood management ( Rahman and Di, 2017 ) such as flood risk 

assessment and flood emergency planning and management. Flood risk 

assessment requires the performance of flood hazard assessment, exposure 

risk assessment, and vulnerability assessment. As a part of the flood hazard 

assessment, RS data have been analyzed for flood forecasting and 

evaluation of flood inundation. As a part of flood emergency planning and 

management, RS data have been widely used in flood early warning 

systems, rescue and relief operations, post-flood damage assessment and 

policy making. Various recent approaches have used advanced ML 

techniques and RS during various stages of flood management. 

Flood forecasting requires accurate estimation of rainfall. Although satellite 

RS has limited direct applicability to flood forecasting, it has been widely 

used for precipitation estimation, which is an important input for flood 

forecasting models. In the late 90s, Tsintikidis et al. (1997) used a shallow 

neural network with one hidden layer to estimate rainfall from a passive 

microwave radiometer SSM/I data. The network considered brightness 

temperature and associated polarization information as inputs and it output 

the rainfall rates. A random forest based ML algorithm was used to estimate 

the precipitation which used satellite-derived information on cloud-top 

height, cloud-top temperature, cloud phase, and cloud water path retrieved 

from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and 

Infrared Imager (SEVIRI) ( Kühnlein et al., 2014 ). Recently, Shi et al. (2015) 

proposed a spatio-temporal sequence forecasting approach using 
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Convolutional Long-Short Term Memory (ConvLSTM) with RADAR echo data 

in 2D from a ground-based RADAR for precipitation nowcasting by 

forecasting the RADAR echo data. Pan et al. (2019) proposed a Convolutional

Neural Network (CNN) based approach to improve the precipitation 

estimates from numerical weather prediction (NWP) models. The authors 

stated that the method outperformed reanalysis precipitation products as 

well as statistical downscaling (SD) products using linear regression, nearest 

neighbors, random forests, or fully connected deep neural networks. In an 

another recent work, Hayatbini et al. (2019) proposed a precipitation 

estimation framework using a fully convolutional neural network and the 

advanced baseline imager data from GOES-16, a multispectral geostationary 

satellite. Specifically, they proposed that the U-net CNN architecture could 

perform rain/no-rain classification using satellite imagery. The study was 

based on the earlier work of Hong et al. (2004) on precipitation estimation 

using remote sensing data and an ANN. 

Flash flood susceptibility mapping is another important process in flood risk 

assessment. Recently, Costache et al. (2019) used a Digital Elevation Model 

(DEM) with 30 m spatial resolution obtained from Shuttle Radar Topography 

Mission (SRTM), and which was developed using the technique called SAR 

interferometry, to derive seven flash-related conditioning factors such as 

slope angle, aspect, profile curvature, and other factors. In addition, the 

authors used aerial imagery from Google Earth to delineate the torrential 

areas along with the land use/cover data, CORINE, which was derived from 

Sentinel-2 and Landsat-8 RS images. K-nearest neighbors (kNN), K-Start (KS),

and Anlytical Hierarchy Process (AHP) algorithms were then applied to obtain
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the flash-flood susceptibility mapping. Thus, RS techniques played a crucial 

role in obtaining eight out of 10 flash-flood conditioning factors. In a similar 

work, Shahabi et al. (2020) used a ML ensemble method with four different 

k-nearest neighbor (kNN) algorithms for flood detection and susceptibility 

mapping. Authors used Sentinel-1 images to generate the flood inventory 

and SRTM DEM to obtain various flood-related conditioning factors. These 

two works show that ML ensemble methods are gaining traction in flood 

susceptibility mapping. 

Mapping of flooded areas is important to performing damage assessment, 

deploying rescue and relief operations and developing policies. An example 

of applying RS and ML to this undertaking is Feng et al. (2015) , who 

developed a random forest based approach to map accurately a flooded area

using high-resolution (0. 2 m) imagery obtained from Unmanned Areal 

Vehicle (UAV) imagery. The data were obtained for Yuyao City of Zhejiang 

Province in Eastern China during the flooding that occurred due to the 

extreme rainfall event on October 7, 2013. Additionally, Jain et al. (2020) 

developed a hybrid approach to combine the strength of the traditional 

water indices from RS imagery and generalization capability of Convolutional

Neural Networks (CNN). The authors proposed a new water index which 

minimized cloud interference in the RS image and used it with a pre-trained 

VGG-16 model ( Simonyan and Zisserman, 2014 ) and a transfer learning 

based approach to re-train the model for a new task of flood water detection.

In a similar work, Potnis et al. (2019) used an Encoder-Decoder Neural 

Network based on the Efficient Residual Factorized Convnet (ERFNet) 

architecture for multi-class segmentation of urban floods satellite imagery 
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from WorldView-2 of floods in Srinagar, India during September 2014. 

Recently, Jiang et al. (2020) proposed an approach to obtain waterlogging 

depth from video images using CNN. The approach generated synthetic 

images from the set of images of reference objects and flood surface, which 

was further used to train the CNN model to obtain the waterlogging depth. 

This method can also be employed to obtain waterlogging depth from the 

images taken of the flooded area using recent drone-based video 

surveillance. Cervone et al. (2017) added to these techniques a methodology

to fuse social media data with the RS data during a flood situation to improve

the flood mapping capability. 

Recently, a few approaches to model the semantics in RS images were 

proposed for flood detection and mapping. Kurte et al. (2017) proposed a 

semantics enabled framework to model the spatial relationships among 

various regions in the RS images to enable spatial-relationships-based 

queries such as Retrieve all images in the ALI repository having Built Up 

region externally connected to the Stagnated Flood Water . Later this work 

was extended to accommodate the temporal aspect to enable the spatio-

temporal semantic queries such as Show road segments which were 

completely submerged during 9th September 2014 to 22nd September 2014

( Kurte et al., 2019 ). In a similar semantics based approach, Potnis et al. 

(2018) developed a flood scene ontology (FSO) which formally defines 

complex classes such as Flooded_Residential_Buildings, 

Accessible_Residential_Buildings, Operational_Roads . After detecting various

objects in the RS imagery using any supervised classification approach, the 
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ontology can be used to infer complex classes which are very important for 

flood mapping. 

2. 5. 2. Water Quality Monitoring 

RS data has been used over the past 50 years to monitor water quality. For 

instance, RS data can be used to measure water turbidity, or lack of 

transparency, which is a good measure of the water quality. Clear water 

shows high absorptivity in the infra-red and near-infrared wavelength 

regions. It also shows some reflectivity in the visible regions. Reflectivity in 

this application can reveal variations in water quality due to salinity, 

temperature, and turbidity. In the past decade, much research has been 

published in which remote sensing and ML approaches are used to estimate 

additional water quality parameters. For example, Dogan et al. (2009) 

explored the non-linear capability of ANN to improve the accuracy of 

biological oxygen demand (BOD) estimation. Wu et al. (2014) compared 

multiple regression (MR) with ANN for total suspended solid (TSS) turbidity 

estimations using data measured with a hyperspectral spectroradiometer 

and found that the non-linear transformation function of ANN performed 

better than MR. Wang et al. (2011) used the support vector regression (SVR) 

method to retrieve various water quality estimators from SPOT-5 satellite 

data. SVRs showed potential in solving problems with small sample size, non-

linearity, or high dimension ( Vapnik, 1995 ). Huo et al. (2014) stated that 

the lakes near urban areas or inside urban areas are becoming eutrophied or

even hypereutrophied due to excessive urbanization and a fast growing 

economy. The authors used genetic algorithms combined with support 

vector machines (GA-SVM) to build an inversion model for eutrophic 
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indicators such as Chl-a from Landsat ETM imagery. They showed that the 

GA-SVM based method had better prediction accuracy than the traditional 

statistical regression methods and ANN based approaches. According to 

Sharaf El Din et al. (2017) , modeling water quality using satellite data is a 

complex problem, and conventional regression-based approaches can not 

perform well while modeling such complex relationships between water 

quality and RS data. The authors claimed that the proposed Landsat8-based-

BPNN—back propagation neural network—to estimate water quality (both 

optical and non-optical) worked better than SVM-based methods. Moreover, 

the authors mentioned that, compared to the BPNN-based methods, the 

SVM-based methods could produce very different results due to differences 

in parameter selections, kernel-selection, high algorithmic complexity, and 

extensive memory requirement. The developed model showed R 2 > 0. 9 for 

the water quality indicators such turbidity, total suspended solids (TSS), 

chemical oxygen demand (COD), biological oxygen demand (BOD), and 

dissolved oxygen (DO). Recently, Hafeez et al. (2019) compared several ML 

techniques including artificial neural networks, random forests, cubist 

regression, and support vector regression for estimating the concentrations 

of suspended solids (SS), Chl-a, and turbidity using Landsat data. The results 

showed that the ANN-based model achieved the highest accuracy in 

estimating the above mentioned water quality indicators. In an another 

recent study, Govedarica and Jakovljević (2019) used 4-years of time-series 

data of in-situ monitoring of surface water bodies for the calibration and 

validation of a water quality estimation based on SVM and ANN algorithms 

using Landsat 8 data. The work also compared the estimations based on 
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Landsat 8 with the Sentinel-2 data and found that, due to higher spatial and 

spectral resolution, Sentinel-2 data is a better alternative for water quality 

monitoring. Interestingly, the results showed that SVM produced more 

accurate results than ANN when used with Landsat data, whereas ANN 

provided better estimation accuracy for turbidity and TSS than SVM, and 

lower accuracy for TN and TP than SVM when used with Sentinel-2 data. 

Finally, Wang et al. (2017) conducted a study that combined a ML algorithm 

and remote sensing spectral indices [difference index (DI), ratio index (RI), 

and normalized difference index (NDI)] through fractional derivatives 

methods and in turn establishes a model for estimating and assessing the 

water quality index (WQI) (2. 3). For this study, the WQI was calculated using

sensitive wave bands and a spectral index of hyperspectral data, and particle

swarm optimization ( Kennedy and Eberhart, 1995 ; Shi and Eberhart, 1998 )

—support vector regression models (PSO-SVR), which deploy a population of 

candidate solutions over the SVR search space. Through comparisons of the 

predictive effects of the 22 water quality index estimations determined by 

the PSO-SVR, Wang et al. (2017) demonstrated that the model based on RI, 

DI, and NDI values of the 1. 6 order was better performing than the others 

for predicting the water quality index of the semi-arid area of central Asia 

[R2 (0. 92), RMSE = 58. 4, RPD (2. 81) and a slope of curve fitting of 0. 97]. 

2. 5. 3. Impervious Surface Detection 

Urban impervious surfaces such as roads, driveways, sidewalks, and parking 

lots prevent water from infiltrating into soil, which has impacts on urban 

hydrology, groundwater, and water quality. Impervious surfaces facilitate 

pollutant's movements to nearby water bodies during heavy rain and urban 
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flooding ( Hall and Hossain, 2020 ). In the context of ML, identifying 

impervious surfaces from RS data is fundamentally a classification approach.

However, many index-based approaches for sighting impervious surfaces 

using RS (e. g., Weng, 2012 ) focus on the developments in this area that 

use ML algorithms. Recently, Yao et al. (2017) adopted a one-class 

classification approach to detect impervious surfaces using high-resolution 

GF-1 satellite images, and found that Presence and Background Learning 

(PBL) and Positive Unlabeled Learning (PUL) outperformed SVM models in 

detecting impervious surfaces. Miao et al. (2019) also used a one class 

classification technique and Landsat-8 imagery for impervious surface 

classification. In a similar study, Bian et al. (2019) used a random forest 

algorithm and time-series data from multiple satellites HJ-1A/B and GF-1/2 to 

estimate the changes in the impervious surface percentage over the years 

2009–2017. Lin et al. (2019) addressed the challenges in detecting 

impervious surfaces due to the diversity of land use and shadow effects in 

high-resolution satellite imagery using a dictionary sparse representation 

classification and data fusion approach with WV-2, GeoEye-1, TerraSAR-X, 

and LiDAR. Zhang H. et al. (2019) addressed similar issues by using a deep 

CNN approach with data fusion from optical and SAR satellites WV-3, 

Sentinel-2, and Radarsat-2. Similar other works, Sun et al. (2019) (used 3D 

CNN with WV-3 and LiDAR), McGlinchy et al. (2019) (used UNet with WV-2), 

show increasing trends of using deep learning based approaches with multi-

satellite data fusion. 
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3. Identification and Assessment of Multi-Hazard Risk 
Multi-hazard identification and compound risk assessment inform effective 

planning activities and strategies ( FEMA, 2015 ), and help water managers 

prioritize attention, investment, and recourse ( Dickson-Anderson et al., 2016

) to target the most urgent and the highest impact risks. Risk is defined as a 

combination of hazard, exposure, and vulnerability ( Garrick and Hall, 2014 ).

Because exposure in urban areas is relatively high due to the high density of 

population and man-made structures ( Hoekstra et al., 2018 ), cities without 

proper preparedness and adaptation strategies are vulnerable to a wide 

variety of urban water hazards ( Shaw et al., 2016 ; Eldho et al., 2018 ; 

Hoekstra et al., 2018 ; Gangrade et al., 2019 ; Rahmasary et al., 2019 ) that 

are often causally linked to further hazards. Additionally, coincidental 

hazards may occur, resulting in a compounding effect overwhelming the 

ability of local or national governments to respond ( Liu and Huang, 2014 ). 

For example, a specific urban water hazard such as flooding can lead to 

multiple risks ( Dai et al., 2017 ; Cook et al., 2019 ) that include inundation of

building structures, damage to infrastructure, and/or the spread of water-

borne diseases ( Gangrade et al., 2018 ; Pereira, 2018 ). Consequently, 

multi-hazard risk assessment techniques must be conducted in the urban 

water management sector in a manner that considers the combined effects 

and interactive reactions of multiple urban water hazards in urban areas (

Garcia-Aristizabal and Marzocchi, 2013 ; Gruber and Mergili, 2013 ; FEMA, 

2015 ; Karlsson et al., 2017 ). 

Despite its usefulness for hazard mitigation planning, multi-hazard risk 

assessment has been under-emphasized in natural disaster management 
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and planning ( Rahmati et al., 2019 ) due to the difficulty of analyzing the 

risk for more than one hazard in the same area, and of analyzing their 

interaction. In the past, studies have focused primarily on forecasting and 

controlling hazards, and their physical processes ( Kalantari et al., 2019 ) in 

natural areas, without considering the social and economic impacts of these 

hazards in urban areas (e. g., hazard effects on buildings, infrastructures, 

and agriculture). Previous studies, which intended to analyze hazard risk and

social vulnerabilities, only analyzed the risks of single hazards separately (

Bühler et al., 2013 ; Statham et al., 2017 ) using physical or statistical 

models [e. g., flood impact using the HEC-FIA model ( Lehman and Light, 

2016 ) or economic damage to fisheries caused by surface water pollution 

using AQUATOX model ( Park et al., 2008 )]. In general, most past studies do 

not consider the multi-hazard chain (hazard interaction) and the combined 

risk of coupled hazard events ( Garcia-Aristizabal and Marzocchi, 2013 ; 

Rahmati et al., 2019 ). Although a few studies ( Freeman and Warner, 2001 ; 

Newman et al., 2017 ) analyze the components of different types of 

vulnerability and risk by evaluating physical, social, and economic 

consequences of a chain of urban hazards, developing a systematic 

approach for multi-hazard risk assessment using conventional modeling 

methods faces multiple challenges. These challenges are primarily 

associated with (a) integrating multiple physical or statistical models and 

domain-data that only target single hazards to simulate a multi-hazard chain 

and predict the combined effect of multiple urban water hazards, and (b) in-

depth understanding of hazards, including interconnections between 

different hazards, and dynamics behind multiple hazards. In the presence of 
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hydro-complexities, many underlying mechanisms of urban water hazards 

remain unknown. Therefore, conventional methods based on physical 

modeling alone may not be the best way to assess multi-hazard risk in urban

water systems. 

In recent years, advanced ML methods have been used to develop 

innovative multi-hazard risk assessment frameworks and workflows, which 

are able to address the challenges associated with conventional risk 

assessment techniques. The feasibility of applying ML to multi-hazard risk 

assessment is shown by the following: (a) ML is a subfield of artificial 

intelligence and data-driven analysis where ML models can easily identify 

trends, patterns, and empirical relationships in a large volume of data 

without considering detailed physical processes behind a phenomenon, such 

as the interactive reactions between multiple water hazards ( Dibike and 

Solomatine, 2000 ; Rahmati et al., 2019 ), and (b) ML models are capable of 

handling data that are multi-dimensional and multi-domain ( Anzai, 2012 ). In

this section, we review several ML workflows and applications that are 

designed to support the analysis of multi-hazard risk for mitigating water-

related hazards. 

For example, Rahmati et al. (2019) investigated and mapped multi-hazard 

exposure using several ML models including BRT (Boosted Regression Trees),

GAM (Generalized Additive Model, a regression which can include linear or 

non-linear predictor variables and predicted values potentially following any 

of a variety of probability distribution functions), and SVM (Support Vector 

Machines), and they evaluated the performance of these ML models using 
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threshold-dependent and threshold-independent methods. The study 

consists of several steps: (1) selection of predictive factors for modeling 

multiple hazards (e. g., flood, landslide, soil erosion, and debris flow), (2) 

creation of Multi-Hazard Inventory using records from road organization and 

the regional water company (RWC) to document the occurrence of various 

hazards, (3) application of ML models to predict and map the exposure of 

multiple hazards, and (4) evaluation of the accuracy of these models. The 

results of this study indicate that (a) different ML models differed in their 

accuracy of predicting the different hazards ( Rahmati et al., 2019 ), and (b) 

the applied ML models are useful and generalizable for multi-risk mapping 

around the world. 

Another example of a multi-hazard multi-model approach is Chen et al. 

(2019) , in which the researchers evaluate the risk of regional flood disaster 

in the Yangtze River Delta (YRD) region. Based on the driving force, pressure,

state, impact, and response (DPSIR) conceptual framework, the study first 

applies a random forest algorithm to screen important indices of flood risk. 

They then construct a radial basis function (RBF) neural network to evaluate 

the flood risk level. In this study, the radial basis function is the activation 

function for the ANN. The study approaches the urban flood risk assessment 

as a multi-classification problem using ML methods and indicates that only a 

few of the previous studies use ML theory to assess the urban flood disaster 

risks that are complex and associated with multiple sources and contributing

factors. The study concludes that the level of urban flood disaster is closely 

related to rainfall, topography, economic development, land use, soil erosion,

urban flood control investment, and disaster emergency response capability,
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shedding light on effective regulation measures for improving flood 

prevention in urban environments. 

3. 1. Exploration of Complex and Interconnected Hazards and Risks 
To explore complex and interconnected hazards and risks, Xu et al. (2019a) 

present a visual analytics framework that combines various types of ML 

applications (e. g., feature selection, classification, and multivariate 

clustering analysis) with different geo-visualization techniques to analyze 

multi-hazard risk at culverts due to flooding and sedimentation. ML models 

applied in this study include the classification schemes, random forests and 

Self Organizing Maps (SOM), and are used for exploratory data analysis, 

aiming to improve the understanding of the factors and interconnected 

hazards (e. g., flooding, excessive erosion, and sediment transport in rivers) 

that contribute to the sedimentation and flood over-topping of culverts 

(transportation infrastructure). The results of the study show that ML 

application can be used not only for multi-risk assessment and hazard 

prediction but also for exploring the complex and interconnected processes 

behind multiple hazards. Additionally, the same framework can be readily 

extended to analyze multiple hazards at other hydraulic structures, such as 

bridges and weirs. Pourghasemi et al. (2020) presented a ML workflow, 

debuted as the Sendai framework, for assessing and mapping multi-hazard 

risk susceptibility, with an overall objective of reducing hazard risk and 

increasing sustainable development in urban areas. The workflow entails 

three main steps: (1) data preparation for obtaining the location of various 

hazards (floods, forest fires, and landslides), (2) recognition of the most 

important factors contributing to the occurrence of different hazards using 
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the Boruta algorithm (a wrapper around random forest classification that 

iteratively removes irrelevant features from the data), and (3) construction 

of multi-hazard susceptibility maps along with validation processes using the

random forest model and the preparation of a Multi-hazard Probability Index 

(MHPI) for the study area. The significance of the Sendai framework is that it 

(a) creates a reasonable understanding of the factors controlling flood and 

forest fire through ML-powered variable ranking and landslide occurrence, 

and (b) produces a multi-hazard probability map for facilitating integrated 

and comprehensive watershed management and land use planning. 

3. 2. Hybrid Modeling for Multi-Hazard Risk Assessment 
A few researchers have applied hybrid models to water-related multi-hazard 

risk assessment. For example, Yang T. et al. (2019) used long short-term 

memory units (LSTM) to improve the timing component of the amplitude of 

peak discharge for flood simulations produced with global hydrological 

models over different climate zones. Hajigholizadeh et al. (2018) used hybrid

models for predicting and assessing water erosion vulnerability and risks, as 

well as for the optimization of management strategies for agricultural or soil 

and water conservation practices. Application of hybrid models to these 

multi-hazard hydrological risks is still emerging within the domain, but the 

utility of this approach continues to be demonstrated across a variety of 

hydrological applications. 

4. Selection of Best Management Practices 
The proper selection and placement of Best Management Practices (BMPs) is 

a critical planning process that helps many watershed and urban planning 

communities effectively mitigate water-related hazards and manage urban 
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water resources (e. g., stormwater management, water pollution reduction, 

and erosion controls) ( Cheng et al., 2006 ; NRCS, 2011 ; USEPA, 2018 ). 

These BMPs are carefully selected from a pool of planning and mitigation 

alternatives that exists in various forms. Based on their spatial scales, these 

alternatives can be categorized as either localized alternatives, which are 

city-scale practices for protecting the municipal water supply and 

infrastructure through structural actions and non-structural actions, and 

watershed alternatives, which represent the management of land cover and 

land-use at the watershed scale ( Carson et al., 2018 ). The selection of BMPs

is a complex multi-objective optimization problem that requires the 

consideration of multiple planning objectives and criteria, which aim to 

maximize the environmental and social benefits for multiple urban 

communities, while minimizing the economic cost for the implementation of 

these management practices ( Maringanti et al., 2008 ; Rodriguez et al., 

2011 ). The development and advancement in GA (section 2. 4. 1) have 

provided watershed management communities with a method for solving 

complicated optimization problems that are associated with the selection of 

BMPs. GA are capable of handling complex and irregular solution spaces 

when searching for a global optimum ( Chambers, 2000 ; Rodriguez et al., 

2011 ) in a multiobjective optimization. Multiobjective optimization has been 

defined as “ vector optimization” ( Cohon and Marks, 1975 ) for which the 

objective function is a vector containing scalar objectives subject to a set of 

constraints, and for which Pareto optimal solutions show the best 

performance. Reed et al. (2013) evaluated a variety of multiobjective 

optimization GA as applied to rainfall-runoff calibration, long-term 
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groundwater monitoring, and risk-based water supply portfolio planning. 

They found five best performing algorithms, of which their high-performance 

adaptive search Borg algorithm ( Hadka and Reed, 2013 ) was the most 

scalable and the best performing, and has shown particular stakeholder 

usefulness in its incorporation into a visual and interactive decision support 

framework ( Reed and Kollat, 2013 ). 

In the water quality management sector, several studies applied GA-based 

optimization models to find optimal solutions to water quality problems for 

several watersheds in the United States by connecting non-point pollution 

reduction models with economic components ( Srivastava et al., 2002 ; Chen

et al., 2015 ). In the stormwater management sector, Limbrunner et al. 

(2013) applied classic optimization techniques to stormwater and non-point 

source pollution management at the watershed scale, and compared their 

effectiveness for finding optimal solutions to that of genetic algorithms, and 

linear and dynamic programming. Dynamic programming proved to find the 

most efficient solution to the sediment-management-optimization problem. 

In addition to the optimization of planning alternatives, ML methods can 

enable selection for optimal management practices ( Savic, 2019 ). AI-driven 

applications are envisioned to learn from the human decision-making 

process, during which best management practices are selected by planners 

and watershed managers based on their past experiences. 
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5. Vision: New Applications of Machine Learning to Urban 
Water Security 
In order to ensure high-quality and timely water availability in the right 

quantities for urban areas, water resources must be managed well. In order 

for water resources to be managed well, a planning system leading to 

actions that promote sustainability and urban water security must be in 

place at the municipal level. We have shown that ML can help with this 

system as it applies to every stage of disaster management and planning, as

outlined sequentially on the left hand side of Figure 2 and shown as an 

interconnected and cyclical process on the right side. That is, we have 

outlined a variety of ML applications for facilitating the individual disaster 

management stages and planning processes. For long-term planning and 

mitigation, we have presented studies that use ML methods to identify and 

assesses multi-hazard risks and vulnerability in urban water systems, taking 

into account socio-economic factors and the multi-hazard chain. We have 

also discussed how ML can help optimize the selection of urban best 

management practices for reducing water pollution and supporting storm 

water management. For early warning and hazards prediction, we have 

examined a range of ML applications for supporting the prediction of various 

water-hazard related parameters. We included studies that combine ML 

methods with process-based models (e. g., conceptual and physics-based 

hydrological and sediment transport models) into hybrid models to increase 

the accuracy and speed of the predictions for water hazard-related 

parameters. We have also discussed how innovative combinations of ML and 

remote sensing technologies can improve the discovery and extraction of 
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useful hazard information and features that are critical to early-warning, 

rapid response and rescue, and recovery and restoration. 

FIGURE 2  

Potential ML opportunities for improving both the generic hazard mitigation 

stages(left)and detailed long-term planning steps(right). 

Our vision is that these methods can be combined into ML water 

management workflows that build on those already in use for characterizing 

and predicting multi-hazard hydrological events. By weaving together the ML

methods we have described, long-term management processes including the

six steps shown on the right hand side of Figure 2 and outlined in the 

introduction can be captured. For example, risks associated with flood, 

drought and water quality can be identified using genetic algorithms, 

artificial neural networks, support vector machines, random forests, and 

other types of regression and hybrid models. Then planning objectives can 

be determined by weighing social risk and adaptive capacity using agent-

based models, boosted regression trees, generalized additive models, and 

support vector machines. To inventory data, ground-based and satellite-

based data can be reckoned, cataloged, and formatted for use in spatial-

relationships-based queries, k-nearest neighbors, analytical hierarchy 

processes, and convolutional neural networks. To select mitigation 

approaches, classification schemes can be used along with multi-criteria 

decision methods. Uncertainty estimates can be used to evaluate the 

mitigation approaches selected. Finally, the insight gained from the ML 
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results may be discussed by the planners to modify and implement the 

approaches determined. 

ML is often not the first choice of analytical tools for planners for a variety of 

reasons. The first is that reasonably robust methods with known uncertainty 

for analyzing water risks are well established and accepted in the water 

management community. ML methods are less proven even if they often can

perform better on data than the traditional methods. To address the 

uncertainty in ML methods, some researchers (e. g., Morrison et al., 2003 ; 

Duncan, 2014 ) use metrics such as Receiver Operating Characteristic 

Curves for scoring the diagnostic ability of a binary (or higher dimensional) 

classifier system, or alternative goodness-of-fit measures for evaluating the 

reliability of ML output. Others (e. g., Munafò and Smith, 2018 ) suggest a 

method of investigation called triangulation , in which multiple approaches 

(at least 3) are used to address one question. The uncertainty associated 

with a complete model chain is large, especially at the required level of 

decision-making under climate change, urbanization ( Dessai et al., 2009 ), 

and the accumulation of uncertainty at each level of the assessment ( Merz 

et al., 2010 ). However, while each ML method may have its own strengths, 

weaknesses, and unrelated assumptions, uncertainty quantification can help 

assign some degree of confidence to results obtained. 

We observe that many aspects of urban water security and hazard modeling 

are still underrepresented as ML problems, in particular, those pertaining to 

the prediction of indirect effects of water-related hazards and their 

associated risks. Additionally, the use of ML techniques often requires 
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additional mathematical and computational training (and often large high 

performance compute resources) beyond traditional statistical methods, and 

time constraints of working water managers may not allow for this additional

training. Nevertheless, understanding the development of sustainable urban 

water management planning, we can draw lessons from history and devise 

sensible approaches for the future that include ML. If we view hydrological 

systems as “ structurally co-constituted of natural, engineered, and social 

elements,” ( Brelsford et al., 2020 ), we may more readily employ ML to 

integrate disparate data and discover new perspectives on management 

practices based on the new patterns these methods reveal. In the near 

future, We also envision an increase in the applications of the hybrid 

modeling approaches (i. e., theory-guided ML) ( Mekonnen et al., 2012 ; 

Karpatne et al., 2017 ; Frame, 2019 ) in the urban water management sector

through the integration of data-driven ML methods and conventional 

process-based domain models. 
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