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1 Introduction 
The Susceptible-Infectious-Recovered (SIR) model has been developed 

nearly hundred years ago [ 1 , 2 ] to understand the time evolution of 

infectious diseases in human populations. The SIR system is the simplest and

most fundamental of the compartmental models and its variations [ 3 – 17 ]. 

The considered population of N ≫ 1 persons is assigned to the three 

compartments s (susceptible), i (infectious), or r (recovered/removed). 

Persons from the population may progress with time between these 

compartments with given infection ( a ( t ) ) and recovery rates ( μ ( t ) ) 

which in general vary with time due to non-pharmaceutical interventions 

taken during the pandemic evolution. 

Let I ( t ) = i ( t ) / N , S ( t ) = s ( t ) / N and R ( t ) = r ( t ) / N denote the 

infected, susceptible and recovered/removed fractions of persons involved in

the infection at time t , with the sum requirement I ( t ) + S ( t ) + R ( t ) = 1 .

In terms of the reduced time τ ( t ) = ∫  0 t d ξ a ( ξ ) , accounting for 

arbitrary but given time-dependent infection rates, the SIR-model equations 

are [ 1 , 2 , 18 ] 

d I d τ = j − K I , d S d τ = − j , d R d τ = K I ( 1 ) 

in terms of the time-dependent ratio K ( t ) = μ ( t ) / a ( t ) of the recovery 

and infection rates and the medically interesting daily rate of new infections 

J ˙ ( t ) = a ( t ) j ( τ ) = τ ˙ j ( τ ) , ( 2 ) 

where the dot denotes a derivative with respect to t . 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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For the special and important case of a time-independent ratio K ( t ) = k = 

const. new analytical results of the SIR-model (1) have been recently derived

[ 19 ] – hereafter referred to as paper A. The constant k is referred to as the 

inverse basic reproduction number k = 1 / R 0 . The new analytical solutions 

assume that the SIR equations are valid for all times t ∈ [ − ∞ , ∞ ] , and that

time t = τ = 0 refers to the “ observing time” when the existence of a 

pandemic wave in the society is realized and the monitoring of newly 

infected persons J ˙ ( t ) is started. In paper A it has been shown that, for 

arbitrary but given infection rates a ( t ) , apart from the peak reduced time τ

0 of the rate of new infections, all properties of the pandemic wave as 

functions of the reduced time are solely controlled by the inverse basic 

reproduction number k . The dimensionless peak time τ 0 is controlled by k 

and the value ε = − ln S ( 0 ) , indicating as only initial condition at the 

observing time the fraction of initially susceptible persons S ( 0 ) = e − ε . 

This suggests to introduce the relative reduced time Δ = τ − τ 0 with respect

to the reduced peak time. In real time t the adopted infection rate a ( t ) acts

as second parameter, and the peak time t m , where J ˙ ( t ) reaches its 

maximum must not coincide with the time, where the reduced j reaches its 

maximum, i. e., τ m ≡ τ ( t m ) ≠ τ 0 , in general. 

2 Results and Discussion 
According to paper A the three fractions of the SIR-model 

S ( τ ) = 1 − J ( τ ) , I ( τ ) = j ( τ ) 1 − J ( τ ) , R ( τ ) = − k ln [ 1 − J ( τ ) ] 

( 3 ) 
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can be expressed in terms of the cumulative number J ( τ ) and differential 

daily rate j ( τ ) = d J / d τ of new infections. The cumulative number satisfies

the nonlinear differential equation 

j ( τ ) = d J d τ = ( 1 − J ) [ J + k ln ( 1 − J ) ] ( 4 ) 

Two important values are J 0 ( k ) = J ( τ 0 ) , where j attains its maximum 

with ( d j / d J ) J 0 = 0 , and the final cumulative number J ∞ ( k ) at τ = t = ∞

, when the second bracket on the right-hand side of the differential Eq. 4 

vanishes, i. e., J ∞ + k ln ( 1 − J ∞ ) = 0 . The two transcendental equations 

can be solved analytically in terms of Lambert’s W function, as shown in 

paper A. In the present manuscript we are going to avoid Lambert’s function 

completely, and instead use the following approximants ( Figure 1A ) 

J 0 ( k ) = ( 3 − k ) ( 1 − k ) ( 1 + k + k 2 ) / 6 , ( 5 ) J ∞ ( k ) = 1 − exp [ − ( 1 

− k ) ( 1 + κ ) / k ] , ( 6 ) κ ( k ) = ( 4 − k ) k / 3 ( 7 ) 

Without any detailed solution of the SIR-model equations the formal 

structure of Eqs 3 and 4 then provides the final values I ∞ = j ∞ = 0 , R ∞ = J 

∞ , and S ∞ = 1 − J ∞ . We list these values together with κ in Table 1 . We 

emphasize that the final cumulative number J ∞ , determined solely by the 

value of k , remains unchanged ( Table 1 ). With NPIs one can only flatten 

and distort the epidemics curve (compared to the case of no NPIs taken) but 

not change the final cumulative number. 

FIGURE 1  

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
and-calculated-effects-of-lockdown-and-lifting-of-interventions/



 Epidemics forecast from sir-modeling, ve... – Paper Example  Page 5

(A)Approximants J 0 , J ∞ , and κ (thick green) used in this manuscript, cf. Eqs

(5) – (7) , compared with the exact functions [ 19 ] (thin black).(B) J ∞ vs. J 0 

and(C) J ∞ vs. j max for the SIR model.(D) k as function of J 0 according to Eq.

14 . For J 0 ≤ 0. 1 this is well approximated by k ≈ 1 − J 0 , where J 0 can be 

replaced by the cumulative fraction of infected people at the time of the 

maximum in the daily number of newly infected people. 

TABLE 1  

Exact parameter values depending on the inverse basic reproduction number

k . 

2. 1 New infections 
The exact solution of the differential Eq. 4 is given in inverse form by (

Appendix A ) 

τ = ∫ 1 − e − ε J d y ( 1 − y ) [ y + k ln ( 1 − y ) ] , ( 8 ) 

which can be integrated numerically (subject to numerical precision issues), 

replaced by the approximant presented in paper A (involving Lambert’s 

function), or semi-quantitatively captured by the simple approximant to be 

presented next. The solution J ( Δ ) as a function of the relative reduced time 

Δ = τ − τ 0 , with the reduced peak time approximated by 

τ 0 = 1 − k f m ( k ) [ ln J 0 1 − J 0 − ln ( e ε − 1 ) ] , ( 9 ) 

corresponding to J = J 0 in Eq. 8 , and where f m ( k ) = 1 − k + ln k , is 

reasonably well captured by ( Appendix C ) 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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J ( Δ ) = 1 2 [ 1 + tanh Y 1 ( Δ ) ] Θ [ Δ s ( k ) − Δ ] + { 1 − 1 − J ∞ 2 [ 1 + 

coth Y 2 ( Δ ) ] } Θ [ Δ − Δ s ( k ) ] ( 10 ) 

with the Heaviside step function Θ ( x ) = 1 ( 0 ) for x ≥ ( < ) 0 . In Eq. 10 

Y 1 = 1 2 [ f m ( k ) ( Δ − Δ s ) 1 − k + ln 1 − k k ] , Y 2 = 1 2 [ E 0 ( k ) ( Δ − 

Δ s ) + ln k ( 1 − k ) κ ] , ( 11 ) 

with 

Δ s = 1 − k f m ( k ) ln ( 1 − k ) ( 1 − J 0 ) k J 0 , E 0 ( k ) = [ k ( 1 − k ) κ − 1 ]

f m ( k ) ( 12 ) 

also tabulated in Table 1 . We note that Δ s ( k ) is always positive. Figure 2 

shows the approximation ( Eq. 10 ) for the cumulative number as a function 

of the relative reduced time Δ for different values of k . For a comparison 

with the exact variation obtained by the numerical integration of Eq. 8 see 

Appendix C . The agreement is remarkably well with maximum deviations 

less than 30 percent. The known limiting case of k = 0 is captured exactly by

the approximant ( Appendix D ). 

FIGURE 2  

(A)Cumulative number J ( Δ ) for different values of k according to Eq. 10 . 

The vertical gray lines starting at the Δ -axis indicate the respective values of

Δ s ( k ) .(B)Same as in(A), divided by the final J ∞ . 

For the corresponding reduced differential rate j ( Δ ) in reduced time we use 

the right hand side of Eq. 4 with J = J ( Δ ) from Eq. 10 , cf. Figure 3 . Note, 
https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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that this j is not identical with the one obtained via j = d J / d τ , because J 

does not solve the SIR equations exactly. The peak value j max in the 

reduced time rate occurs when J = J 0 and is thus determined by j max = ( 1 

− J 0 ) ( 1 − J 0 − k ) , also tabulated in Table 1 . 

FIGURE 3  

Reduced differential rate j ( Δ ) of newly infected fraction corresponding to 

the cumulative J ( Δ ) shown in Figure 2 .(A)linear scale,(B)semilogarithmic 

scale. 

As can be seen in Figure 3 the rate of new infections ( Eq. 12 ) is strictly 

monoexponentially increasing j ( Δ ≪ 0 ) ≃ e Γ 1 Δ with Γ 1 ( k ) = f m ( k ) / (

1 − k ) well before the peak time, and strictly monoexponentially decreasing 

well above the peak time j ( Δ ≫ 0 ) ∝ e − Γ 2 Δ with the Γ 2 = ( 1 − J ∞ ) Γ 

1 / κ . These exponential rates exhibit a noteworthy property and correlation 

in reduced time: 

Γ 2 Γ 1 = 1 − J ∞ κ ( 13 ) 

The SIR parameter k affects several key properties of the differential and 

cumulative fractions of infected persons. If the maximum J ˙ ( t m ) of the 

measured daily number of newly infected persons has passed already, we 

find it most convenient to estimate k from the cumulative value J ( t m ) at 

this time t m . While the maximum of J ˙ ( t ) must not occur exactly at τ ( t 

m ) = τ 0 ( Appendix F ), we can still use J 0 as an approximant for the value 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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of J ( t m ) and the relationship between J 0 and k can be inverted to read (

Appendix E ) 

k = 2 ( 1 − J 0 ) − 1 1 + ln ( 1 − J 0 ) = 1 − J 0 − J 0 2 2 + O ( J 0 3 ) ( 14 ) 

The dependency of k on J 0 is shown in Figure 1C . With the so-obtained 

value for k at hand, the infection rate a ( t m ) at peak time can be inferred 

from a ( t m ) = J ˙ ( t m ) / j max ( k ) . It provides a lower bound for a 0 . 

A major advantage of the new analytical solutions in paper A and here is 

their generality in allowing for arbitrary time-dependencies of the infection 

rate a ( t ) . Such time-dependencies result at times greater than the 

observing time t = 0 from non-pharmaceutical interventions (NPIs) taken 

after the pandemic outbreak [ 20 ] such as case isolation in home, voluntary 

home quarantine, social distancing, closure of schools and universities and 

travel restrictions including closure of country borders, applied in different 

combinations and rigor [ 21 ] in many countries. These NPIs lead to a 

significant reduction of the initial constant infection rate a 0 at later times. It 

is also important to estimate the influence of a later lifting of the NPIs on the 

resulting increase in the case numbers in order to discriminate this increase 

from the onset of a second wave. Especially in the papers by Dehning et al. [

17 ], Flaxman et al. [ 22 ] and those reviewed by Estrada [ 4 ] the influence 

of NPIs on the time evolution of the Covid-19 pandemics has been studied 

using numerical solutions of the SIR-model equations. Our analytical study 

presented here is superior to these results from numerical simulations as its 

predictions are particularly robust for the late forecast of the pandemic 

wave. 
https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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2. 2 Modeling in Real Time of Lockdowns 
The corresponding daily rate J ˙ ( t ) and cumulative number J ( t ) of new 

infections in real time t for given time-dependent infection rates a ( t ) are J 

( t ) = J ( τ ( t ) ) and J ˙ ( t ) given by Eq. 2 . From a medical point of view the

daily rate J ˙ ( t ) is most important as it determines also i) the fatality rate [

23 ] d ( t ) ≃ f J ˙ ( t − t d ) with the fatality percentage f ≃ 0. 005 in 

countries with optimal medical services and hospital capacities and the delay

time of t d ≃ 7 days, ii) the daily number of new seriously sick persons [ 24 ] 

NSSPs = 2 f J ˙ ( t − t d ) needing access to breathing apparati, and iii) the 

day of maximum rush to hospitals t r = t m + t d . In countries with poor 

medical and hospital capacities and/or limited access to them the fatality 

percentage is significantly higher by a factor h which can be as large as 10. 

To calculate the rate and cumulative number in real time according to Eq. 2 

we adopt as time-dependent infection rate the integrable function known 

from shock wave physics 

a LD ( t ) = a 0 2 [ 1 + q − ( 1 − q ) tanh t − t a t b ] ≃ { a 0 for t ≪ t a q a 0 

for t ≫ t a , ( 15 ) 

which implies 

τ LD ( t ) = a 0 2 [ ( 1 + q ) t − ( 1 − q ) t b ln ( cosh t − t a t b cosh t a t b ) ]

≃ { a 0 t for t ≪ t a q a 0 t for t ≫ t a ( 16 ) 

The time-dependent lockdown infection rate ( Eq. 15 ) is characterized by 

four parameters: i) the initial constant infection rate a 0 at early times t ≪ t 

a , ii) the final constant infection rate a 1 = q a 0 at late times t ≫ t a 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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described by the quarantine factor q = a 1 / a 0 ≤ 1 , first introduced in Refs.

21 and 24 , iii) the time t a of maximum change, and iv) the time t b 

regularizing the sharpness of the transition. The latter is known to be about t

b ≃ 7 –14 days reflecting the typical 1–2 weeks incubation delay. 

Consequently, the parameter q mainly affects the amplitude J ˙ shown in the 

left columns of Figures 5 and 6 (note that we also plotted the case of no NPIs

taken (i. e., q = 1 ) for comparison). Alternatively, the transition time t b 

controls the rapidness of the transition in the fraction of infected persons per

day and therefore the widespread. 

Moreover, the initial constant infection rate a 0 characterizes the Covid-19 

virus: if we adopt the German values a 0 ≃ 58 days −1 and t b ≃ 11 

determined below, with the remaining two parameters q and t a we can 

represent with the chosen functional form Eq. 15 four basic types of 

reductions: 1) drastic (small q ≪ 1 ) and rapid ( t a small), 2) drastic (small q 

≪ 1 ) and late ( t a large), 3) mild (greater q ) and rapid ( t a small), and 4) 

mild (greater q ) and late ( t a large). The four types are exemplified in 

Figure 4 . 

FIGURE 4  

(A)Infection rate a ( t ) ,(B)reduced time τ ( t ) ,(C)daily rate of new infections

J ˙ ( t ) ,(D)cumulative fraction J ( t ) of infected persons. In each panel we 

consider four basic types of reductions: 1) drastic (small q = 0. 1 ) and rapid 

( t a = 20 ), 2) drastic (small q = 0. 1 ) and late ( t a = 40 ), 3) mild ( q = 0. 5

) and rapid ( t a = 20 ), and 4) mild ( q = 0. 5 ) and late ( t a = 40 ). 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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Remaining parameters due to Germany: t b = 11 days, a 0 = 57 days −1 , 

and k = 0. 989 . Both curves in(C)for the late cases reach the same value at 

the maximum, which is plausible as the curve remains unaffected at the time

of the maximum. The rapid cases tend to lower the maximum amplitude 

already at the time of the maximum, and thus tend to decrease it compared 

with the late cases. 

2. 3 Verification and Forecast 
In countries where the peak of the first Covid-19 wave has already passed 

such as e. g. Germany, Switzerland, Austria, Spain, France and Italy, we may 

use the monitored fatality rates and peak times to check on the validity of 

the SIR model with the determined free parameters. However, later 

monitored data are influenced by a time varying infection rate a ( t ) 

resulting from non-pharmaceutical interventions (NPIs) taken during the 

pandemic evolution. Only at the beginning of the pandemic wave it is 

justified to adopt a time-independent injection rate a ( t ) ≃ a 0 implying τ = 

a 0 t . Alternatively, also useful for other countries which still face the climax 

of the pandemic wave, it is possible to determine the free parameters from 

the monitored cases in the early phase of the pandemic wave. We illustrate 

our parameter estimation using the monitored data from Germany with a 

total population of 83 million persons ( P = 8. 3 × 10 7 ). 

In Germany the first two deaths were reported on March 9 so that ε = 4. 8 × 

10 − 6 corresponding to about 400 infected people 7 days earlier, on March 

2 ( t = 0 ). The maximum rate of newly infected fraction, J ˙ max ≃ 380 / f P ,

occurred t m = 37 days later, consistent with a peak time of fatalities on 16 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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April 2020. At peak time the cumulative death number was D m = 3820 / P 

corresponding to J m = D m / f = 200 D m = 0. 009 . This implies k ≈ 1 − J 0 

≈ 0. 991 according to Eq. 14 (and not far from the value k = 0. 989 to be 

determined from the fit shown in Figure 5 ). From the initial exponential 

increase of daily fatalities in Germany we extract Γ 1 ( k ) a 0 ≃ 0. 28 , 

corresponding to a doubling time of ln ( 2 ) / Γ 1 a 0 ≃ 2. 3 days, as we know 

Γ 1 ( k ) = f m ( k ) / ( 1 − k ) ≃ 0. 0046 already from the above k . The 

quantity a m we can estimate from the measured J ˙ max , as J ˙ max = a m j

max and j max ( k ) ≈ 4. 2 × 10 − 5 . Using the mentioned value for J ˙ max ,

we obtain a m ≈ 22 / days as a lower bound for a 0 . 

FIGURE 5  

(A)Measured data J ˙ ( t ) of new daily infected fraction (black circles) for 

Germany (DEU) compared with the model J ˙ ( t ) = a ( t ) j ( τ ( t ) ) outlined 

here (green). Shown for comparison is the case where no NPIs are imposed 

( q = 1 , black dot-dashed).(B)The measured cumulative fraction J ( t ) (black 

circles) together with the model prediction (green), and the reference q = 1 

case. Also depicted are J 0 and the value at peak time, J m .(C)The infection 

rate a ( t ) corresponding to the curves shown in(A)and(B). Model parameters

mentioned in the figure; a dropped from an initial value of ≃ 58 /days down 

to 7. 8/days during the 2nd half of march. This realized case can be directly 

compared with the four hypothetic cases shown in Figure 4 . For details on 

how to obtain the parameters see Appendix G . 
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With these parameter values the entire following temporal evolution of the 

pandemic wave in Germany can be predicted as function of t b and q . To 

obtain all parameters consistently, we fitted the available data to our model 

without constraining any of the parameters ( Figure 5 ). This yields for 

Germany k ≃ 0. 989 , t a ≃ 21 days, q ≃ 0. 15 , a 0 ≃ 58 days, and t b = 11 

days. The obtained parameters allow us to calculate the dimensionless peak 

time τ m ≃ 1353 , the dimensionless time τ 0 ≃ 1390 , as well as J m ≃ 0. 

009 , J 0 ≃ 0. 011 , Γ 1 ≃ 0. 0056 and Γ 2 ≃ 0. 0055 . 

We note that the value of k = 0. 989 implies for Germany that J ∞ ( 0. 989 ) 

= 0. 022 according to Figure 1 , so that at the end of the first Covid-19 wave 

in Germany 2. 2% of the population, i. e., 1. 83 million persons will be 

infected. This number corresponds to a final fatality number of D ∞ = 9146 

persons in Germany. Of course, these numbers are only valid estimates if no 

efficient vaccination against Covid-19 will be available. 

An important consequence of the small quarantine factor q = 0. 15 is the 

implied flat exponential decay after the peak. Because Γ 1 ≃ Γ 2 for k = 0. 

989 , the exponential decay is by a factor q smaller than the exponential rise

prior the climax, i. e., 

J ˙ ( t ≫ t m ) ∝ e − Γ 2 a 0 q t = e − Γ 1 ( 1 − J ∞ ) a 0 q t κ ≃ e − t / 21. 8 

days ( 17 ) 

Equation 17 yields a decay half-live of ln ( 2 ) × 21. 8 days ≃ 15 days to be 

compared with the initial doubling time of ≃ 2. 3 days. For Germany we thus 

know that their lockdown was drastic and rapid: the time t a ≃ March 23 is 

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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early compared to the peak time t m ≃ April 8 resulting in a significant 

decrease of the infection rate with the quarantine factor q ≃ a m / a 0 = 0. 

15 . In Figure 5 we calculate the resulting daily new infection rate as a 

function of the time t for the parameters for Germany, and compare with the 

measured data. In the meantime, the strict lockdown interventions have 

been lifted in Germany: this does not effect the total numbers J ∞ and D ∞ 

but it should reduce the half-live decay time further. 

We also performed this parameter estimation for other countries with 

sufficient data. For some of them data is visualized in Figure 6 , parameters 

for the remaining countries are tabulated in Tables 2 and 3 . Most 

importantly, with the exception of the six countries ARM, DOM, IRN, PAN, 

PER, SMR we found values of k > 0. 9 for all other countries investigated 

corresponding to basic reproduction numbers R 0 = 1 / k < 1. 11 . These 

values are significantly smaller than the estimates of R 0 ∈ [ 2. 4 , 5. 6 ] in 

the mainstream literature on Covid-19 [ 4 , 22 ]. Part of these significant 

differences may be explained by the different definitions of R 0 . 

FIGURE 6  

Same as Figure 5 for other countries:(A)Italy (ITA),(B)France (FRA),

(C)Sweden (SWE),(D)Iran (IRN),(E)Great Britain (GBR). 

TABLE 2  

Model parameters and model implications. The columns are as follows: 

country ( α 3 code), population P in millions (M), outbreak time defining t = 0
https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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, fitted time t a , estimated time t 0 corresponding to the reduced peak time 

τ 0 of j ( τ ) , fitted SIR parameter k , fitted initial infection rate a 0 , fitted 

parameter t b , fitted quarantine factor q , estimated doubling time t 2 

characterizing the early exponential increase, estimated decay half life t 2 ′ 

characterizing the late exponential decrease, estimated unreported number 

of infections per reported number, estimated final fraction J ∞ of infected 

population, final number of estimated fatalities D ∞ P = J ∞ P f . We use f = 

0. 005 as the probability to decease from a Covid-19 infection (reported plus 

unreported). 

TABLE 3  

Continuation of Table 2 . 

While the inverse basic reproduction number k = 1 / R 0 = μ ( t ) / a ( t ) in 

the SIR-model is clearly defined as the ratio of the recovery to infection rate, 

there are alternative definitions of the basic reproduction number R 0 using 

the effective reproduction factor R ( t ) . As discussed in detail in Sect. 4 of 

Ref. 25 R ( t ) has to be calculated from the convolution 

R ( t ) = c ( t ) ∫  0 ∞ d s W ( s ) c ( t − s ) ( 18 ) 

of the number of daily cases c ( t ) with the serial interval distribution W ( t ) 

describing the probability for the time lag between a person’s infection and 

the subsequent transmission of the virus to a second person. As different 

choices of the serial interval distribution are used in the literature this leads 

to differences in the calculated associated effective reproduction factors R ( t

https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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) . As R 0 is identical to the value R ( t 0 ) at the starting time of the outbreak

it is not clear in the moment that this R 0 will be identical to the 1 / k of the 

SIR model [ 26 ]. 

2. 4 Summary and Conclusion 
In this work we derived for the first time an analytical approximation for the 

solution for the SIR-model equations with an accuracy better than 30 

percent. The explicit approximation refers to the fraction of newly infected 

persons per day J ˙ as a function of the relative reduced time with respect to 

the reduced peak time. This closed form of the analytical solution only 

depends on a single parameter k , the ratio of infection to recovery rates. We

assume that this ratio is independent of time. As J ˙ can be directly 

compared with the monitored death and infection rates in different countries,

we see no advantage in using the more complicated SEIR-model which 

currently does not allow for a closed analytical solution. An analytic solution 

of the SIR model with an accuracy better than 5% is available as well from 

our yet unpublished work where we did not consider time-dependent a ( t ) , 

but it has the disadvantage that it involves Lambert’s function. 

For the first time in the history of SIR-research (these equations have been 

discovered 93 years ago!) we thus have derived an analytical solution which 

can be applied successfully to all accumulated data of virus diseases in the 

world. Being of analytic form it is superior to all existing numerical 

simulations and results in the literature. We also discovered for the first time 

how to extract the value of k from the monitored data which is highly 

nontrivial. We applied this new method to the data taken for the Covid-19 

pandemic waves in many countries. Our work includes an estimate on the 
https://assignbuster.com/epidemics-forecast-from-sir-modeling-verification-
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effects of non-pharmaceutical interventions in these countries. This is 

possible as our analytical solution holds for arbitrary but given time 

dependencies a ( t ) of the infection rates. 

An example, on how lockdown lifting can be modeled is described in 

Appendix H . The situation is depicted in Figure 7 . The lifting will increase a (

t ) from its present value up to a value that might be close to the initial a 0 . 

While the dynamics is altered, the final values remain unaffected by the 

dynamics, except, if the first pandemic wave is followed by a 2nd one. The 

values for J ∞ provided in Tables 2 and 3 provide a hint on how likely is a 2nd

wave. These values correspond to the population fraction that had been 

infected already. While this fraction is extremely large in Peru (53%), it is still

below 1 % in several of the larger countries. The tables also report the 

unreported number of infections per reported number (column “ dark”), 

estimated from the number of fatalities, reported infections, and the death 

probability f . 

FIGURE 7  

Same as Figure 4 but with incomplete lifting ( η = 0. 8 ) hundred days after 

breakout ( t s = 100 days).(A)infection rate a ( t ) ,(B)reduced time τ ( t ) ,

(C)daily rate of new infections J ˙ ( t ) ,(D)cumulative fraction J ( t ) of infected

persons. In each panel we consider four basic types of reductions: 1) drastic 

(small q = 0. 1 ) and rapid ( t a = 20 ), 2) drastic (small q = 0. 1 ) and late ( t 

a = 40 ), 3) mild ( q = 0. 5 ) and rapid ( t a = 20 ), and 4) mild ( q = 0. 5 ) 
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and late ( t a = 40 ). Remaining parameters due to Germany: t b = 11 days, 

a 0 = 57 days −1 , and k = 0. 989 . 
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Appendix a: non-parametric solution of the sir model 
We start from the Eq. 19 from part A 

τ = ∫  ε G d x 1 − e − x − k x ( A1 ) 

and substitute 

y = 1 − e − x , x = − ln ( 1 − y ) , d x d y = 1 1 − y ( A2 ) 

Consequently, as the cumulative number of new infections is given (see Eq. 

37 from part A) by 

τ = ∫  ψ J d y ( 1 − y ) f ( y ) , f ( y ) = y + k ln ( 1 − y ) ( A3 ) 
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with the abbreviation ψ = J ( 0 ) = 1 − e − ε for the initial value. This inverse 

relation τ ( J ) is the general solution of the SIR-model for constant k . It is not

in parametrized form. 

Appendix a. 1: Maximum of j 
Taking the derivative of Eq. 37 from part A with respect to τ we obtain 

1 = j ( 1 − J ) [ J + k ln ( 1 − J ) ] ( A4 ) 

or the exact SIR relation 

j = ( 1 − J ) [ J + k ln ( 1 − J ) ] ( A5 ) 

Equation A5 provides 

d j d J = 1 − k − 2 J − k ln ( 1 − J ) ( A6 ) 

The maximum value j max occurs for ( d j / d J ) J 0 = 0 providing 

1 − J 0 = k ln ( 1 − J 0 ) + k + 1 2 ( A7 ) 

Setting 1 − J 0 = e − X yields 

e − X = − k 2 ( X − k + 1 k ) , ( A8 ) 

which is of the form of Eq. G1 from part A, and solved in terms of the non-

principal Lambert function W − 1 as 

X = k + 1 k + W − 1 ( α 0 ) , α 0 = − 2 k e e − 1 / k , ( A9 ) 

so that 
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J 0 = 1 − e − 1 + k k − W − 1 ( α 0 ) = 1 + k 2 W − 1 ( α 0 ) ( A10 ) 

The maximum value is then given by 

j max = j ( J 0 ) = k 2 4 { [ 1 + W − 1 ( α 0 ) ] 2 − 1 } ( A11 ) 

and this can also be written as j max = ( 1 − J 0 ) ( 1 − J 0 − k ) with J 0 from 

Eq. A10 . According to Eq. 8 the reduced peak time in the dimensionless rate

of new infections is then given by 

τ 0 = ∫  ψ J 0 d y ( 1 − y ) f ( y ) , ( A12 ) 

which is the only quantity depending besides on k also on ε via ψ = 1 − e − ε

. In order to have our approximation depending only on k we therefore 

introduce the relative reduced time with respect to the peak reduced time 

Δ = τ − τ 0 = ∫  J 0 J d y ( 1 − y ) f ( y ) ( A13 ) 

which is still exact, independent of ε and only determined by the value of k . 

Appendix b: approximating the function f ( y ) 
The function f ( y ) defined in Eq. A3 vanishes for y c + k ln ( 1 − y c ) = 0 , 

or 1 − y c = e − y c / k with the solution 

y c ( k ) = J ∞ ( k ) = ( 1 − k ) ( 1 + κ ) ( B1 ) 

where κ was already stated in the introduction. According to Eq. A13 the 

value J ∞ corresponds to Δ = τ = ∞ , so the maximum value of the 

cumulative number of new infections is J max = J ∞ . 
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Moreover, the function f ( y ) attains its maximum value f m ( k ) = f ( y = 1 

− k ) = 1 − k + k ln k at y m = 1 − k . As approximation we use 

f ( y ) ≃ { f 1 ( y ) for y ≤ 1 − k f 2 ( y ) for ( 1 − k ) ≤ y ≤ J ∞ = f m { y 1 − k 

for y ≤ 1 − k J ∞ − y J ∞ − ( 1 − k ) for 1 − k ≤ y ≤ J ∞ ( B2 ) 

which is shown in Figure B1 in comparison with the function f ( y ) . The 

agreement is reasonably well with maximum deviations less than 30%. 

FIGURE B1  

Comparison of the approximation (B2) with the exact curve for f ( y ) for 

different values of k . Vertical solid lines mark the position of the maximum 

of the function. 

Appendix c: approximations for J (τ) 
Figure C1 demonstrates that J 0 ( k ) is always smaller than 1 − k . In order to

calculate the integral in Eq. A13 with the approximation Eq. B1 we then have

to investigate two cases: 1) For J 0 < 1 − k and J < 1 − k only the function f 1

contributes and 

Δ ( J < 1 − k , J 0 < 1 − k ) = ∫  J 0 J d y ( 1 − y ) f 1 ( y ) ( C1 ) 

2) For J ≥ 1 − k > J 0 both functions f 1 and f 2 contribute and 

Δ ( J ≥ 1 − k > J 0 ) ≃ ∫  J 0 1 − k d y ( 1 − y ) f 1 ( y ) + ∫  1 − k J d y ( 1 − y )

f 2 ( y ) = Δ s + ∫  1 − k J d y ( 1 − y ) f 2 ( y ) ( C2 ) 

with 
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Δ s = ∫  J 0 1 − k d y ( 1 − y ) f 1 ( y ) = 1 − k f m ( k ) ∫  J 0 1 − k d y ( 1 − 

y ) y = 1 − k f m ( k ) ln 1 J 0 − 1 1 1 − k − 1 = 1 − k f m ( k ) ln ( 1 − J 0 ) 

( 1 − k ) k J 0 ( C3 ) 

denoting the relative time corresponding to the value J = 1 − k . We consider

each case in turn. 

FIGURE C1  

The ratio ( 1 − k ) / J 0 ( k ) as a function of k . 

Appendix C. 1 Case (1): J ≤ 1 − k, J 0 < 1 − k 
Here Eq. C1 provides 

f m Δ 1 − k = ∫  J 0 J d y ( 1 − y ) y = ln 1 J 0 − 1 1 J − 1 , ( C4 ) 

so that the difference of Eqs C3 and C4 yields 

f m ( Δ − Δ s ) 1 − k = ln k J ( 1 − k ) ( 1 − J ) , ( C5 ) 

or after inversion 

J ( τ ) = [ 1 + k 1 − k e − f m ( Δ − Δ s ) 1 − k ] − 1 ( C6 ) 

Appendix C. 2 Case (2): J ≥ 1 − k > J 0 

Here Eq. C2 with Eq. C3 yields 

f m Δ ≃ ( 1 − k ) ∫  J 0 1 − k d y ( 1 − y ) y + [ J ∞ − ( 1 − k ) ] ∫  1 − k J d y 

( 1 − y ) ( J ∞ − y ) ( C7 ) = f m Δ s + ( J ∞ − 1 + k ) ∫  1 − k J d y ( 1 − y ) ( J 

∞ − y ) , 
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so that 

f m ( Δ − Δ s ) J ∞ − ( 1 − k ) = ∫  1 − k J d y ( 1 − y ) ( J ∞ − y ) = − 1 1 − J 

∞ ln 1 − 1 − J ∞ 1 − J 1 − 1 − J ∞ k ( C8 ) = − 1 1 − J ∞ ln k ( J ∞ − J ) ( J ∞ − 

1 + k ) ( 1 − J ) 

After straightforward but tedious algebra we obtain 

J ∞ − J 1 − J = J ∞ − ( 1 − k ) k e − E , ( C9 ) E ( Δ ) = 1 − J ∞ J ∞ − ( 1 − k ) f 

m ( Δ − Δ s ) ( C10 ) 

and consequently 

J ( Δ ) = 1 + J ∞ − 1 1 − ( 1 − k ) κ k e − E ( Δ ) ( C11 ) 

Using the identities 2 ( 1 + e − 2 Y ) − 1 = 1 + tanh Y and 2 ( 1 − e − 2 Y ) −

1 = 1 + coth Y we combine the results Eqs C6 and C11 to the analytical 

approximation of the SIR-model equations at all reduced times, stated in Eqs 

10 – 12 above. A comparison with the exact numerical solution of the SIR 

model is provided in Figure C2 . The corresponding j ( Δ ) is obtained from J 

( Δ ) via Eqs A5 . 

FIGURE C2  

Comparison for(A) j ( Δ ) and(B) J ( Δ ) between exact solution of the SIR 

model (green) and the approximant used here (black) for various k . Our 

approximant [ 19 ] in terms of Lambert’s function is shown as well, but 

coincides with the exact solution (green) in this representation. 
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Appendix d: si-limit k = 0 
In the limit k = 0 Eq. A7 provides J 0 ( k = 0 ) = 1 / 2 so that with lim k → 0 f 

m ( k = 0 ) = 1 the time scale ( Eq. C3 ) becomes 

Δ s ( k = 0 ) = lim k → 0 ln 1 − k k = ∞ ( D1 ) 

With this result 

Y 1 ( k = 0 ) = Δ 2 − 1 2 lim k → 0 [ Δ s + ln k 1 − k ] = Δ 2 − 1 2 lim k → 0 

[ ln 1 − k k + ln k 1 − k ] = Δ 2 ( D2 ) 

Consequently, the cumulative number Eq. 10 and the rate Eq. 4 in this case 

for all times correctly reduce to 

J ( Δ , k = 0 ) = 1 2 [ 1 + tanh Δ 2 ] , j ( Δ , k = 0 ) = 1 4 cosh 2 ( Δ / 2 ) ( D3 ) 

Appendix e: relationship between J 0 and K 
Here we prove Eq. 14 . According to paper A the quantity J 0 is given by J 0 =

1 − e − G 0 with 

G 0 = 1 + k k + W − 1 ( − 2 e − 1 / k k e ) = − ln ( 1 − J 0 ) ( E1 ) 

where e denotes Euler’s number and W − 1 the non-principal solution of 

Lambert’s equation z = W e W . Equation E1 is of the form x = r + c − 1 W 

( c e − c r / β ) upon identifying c = 1 , r = 1 / k , β = − k e / 2 , and x = − [ 1

+ ln ( 1 − J 0 ) ] . From paper A we thus know that e − c x = β ( x − r ) holds,

or equivalently 

( 1 − J 0 ) e = − k e 2 [ − 1 − ln ( 1 − J 0 ) − 1 k ] = k e 2 [ 1 + ln ( 1 − J 0 ) ] 

+ e 2 ( E2 ) 
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This is readily solved for k , and thus proves Eq. 14 . 

Appendix f: time of maximum in the measured differential 
rate J ˙ ( t ) 
One has J ( t ) = J ( τ ( t ) ) and J ˙ ( t ) = τ ˙ ( t ) J ′ ( τ ( t ) ) = a ( t ) j ( τ ( t ) )

since j = J ′ if we let the prime denote a derivative with respect to τ. The 

maximum in J ˙ ( t ) thus fulfills 

0 = J ¨ ( t m ) = a ˙ ( t m ) j ( τ ( t m ) ) + a 2 ( t m ) j ′ ( τ ( t m ) ) ( E1 ) 

or equivalently, 

0 = [ d ln j d τ + a ˙ a 2 ] t = t m ( E2 ) 

From part A we know that 

d ln j d τ = 1 − 2 J − k ln ( 1 − J ) − k ( E3 ) 

and our J 0 = J ( τ 0 ) solves 1 = 2 J 0 + k ln ( 1 − J 0 ) + k . That is, j ' ( τ 0 ) 

= 0 . If a does not depend on time, τ 0 = τ ( t m ) = a 0 t m , but this is not 

generally the case. To find t m and τ m ≡ τ ( t m ) one has to solve Eq. E1 , 

or Eq. E2 . Equation E2 with Eq. E3 is solved by 

J m = J ( τ m ) = 1 + k 2 W − 1 ( α m ) ( E4 ) 

with 

α m = − 2 e − ( 1 + C m ) / k e k , C m = − a ˙ ( t m ) a 2 ( t m ) ( E5 ) 

The corresponding j is, according to Eq. 4 , 
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j ( τ m ) = ( 1 − J m ) [ J m + k ln ( 1 − J m ) ] ( E6 ) 

The smaller C m , the closer is J m to J 0 . 

Appendix g: fitting the data 
As discussed in length in paper A we base our analysis of existing data on 

the reported cumulative number of deaths, D ( t ) , from which we estimate 

the cumulative number of infections J ( t ) = D ( t − t d ) / f = 200 D ( t − t d )

with t d = 7 days. From the cumulative value J m = J ( t m ) at the time t m of

the maximum in J ˙ ( t ) we estimate k via Eq. 14 upon assuming J m ≈ J 0 . 

Similarly, a m = a ( t m ) is estimated from a m = J ˙ ( t m ) / j max ( k ) . 

These t m , k , a m are not the final values, but provide starting values which

are then used in the minimization of the deviation between measured and 

modeled J ( t ) . The minimization is performed assuming the time-dependent

a ( t ) parameterized by Eq. H1 involving parameters t a > 0 , t b > 0 , a 0 > 

0 , q ∈ [ 0, 1 ] , q < η ∈ [ 0, 1 ] and t s > t m . While τ ( t ) is given by the 

integrated a ( t ) , we use three strategies to model J ( t ) : i) the numerical 

solution of the SIR model, ii) the approximant G ( τ ) and J ( τ ) = 1 − e − G 

( τ ) developed in part A, and iii) the approximant J ( Δ ) given by Eq. 10 with 

Δ = τ − τ m and τ m specified by Eq. 9 . Because the numerical solution (i) is

extremely well approximated by (ii), and (ii) and (iii) compared to (i) not 

prone to numerical instabilities at small and large Δ , we present results only 

for method (iii), as they can be readily reproduced by a reader without 

Lambert’s function at hand. 
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Appendix h: modeling of lockdown lifting 
Similarly to the lockdown modeling a later lifting of the NPIs can be modeled 

by adopting the infection rate 

a ( t ) = a LD ( t ) Θ ( t s − t ) + a stop ( t ) Θ ( t − t s ) ( H1 ) 

where t s denotes the stop time of the lockdown still represented by the 

infection rate Eq. 15 , and where a LD is given by Eq. 15 . The infection rate 

after t s is assumed to be 

a stop ( t ) = a 0 [ q s + ( η − q s ) tanh t − t s t b ] ≃ { q s a 0 for t = t s η a 

0 for t ≫ t s , ( H2 ) 

with q s = a LD ( t s ) / a 0 the quarantine factor reached at the time t s of 

lifting. Together with the reduced time given by Eq. 16 we now find 

τ ( t ) = τ LD ( t ) Θ ( t s − t ) + τ stop ( t ) Θ ( t − t s ) ( H3 ) 

and 

τ stop ( t ) = τ LD ( t s ) + q s ( t − t s ) a 0 + ( η − q s ) a 0 t b ln [ cosh ( t −

t s t b ) ] ( H4 ) 

with τ LD ( t ) from Eq. 16 . For the four basic types of Figure 4 we 

demonstrate in Figure 7 the effect of incomplete lifting. 
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