
Software engineering

https://assignbuster.com/software-engineering-essay-samples/
https://assignbuster.com/


Software engineering – Paper Example Page 2

Software engineering has long been a potential field for researching 

collaboration. With technological development and economic means of 

increasing production, collaborative software engineering became a global 

phenomenon. This research is closely related to collaboration technology for 

collaborative software engineering: collaborative applications and 

infrastructures. Collaborative applications and infrastructures give better 

computer support for cooperative work than what has been offered by 

single-user applications. 

Support for distributed collaborative software engineering helps to support 

cooperative work at all stages of collaborative software engineering: design, 

inspection, programming, debugging, and testing. Collaborative software 

applications offer many advantages, for example, potential savings in costs. 

Researchers are examining how computer supports a variety of collaborative

processes including team decision making, writing, and budget planning. 

It is of great significance because collaborative applications reduce team 

interaction costs in distributed collaborative software engineering: 

requirements analysis, design, inspection, programming, checkout, and 

testing. Infrastructure and Applications for Collaborative Software 

Engineering Prasun Dewan and Rajiv Choudhary (1995) investigated support 

for distributed collaborative software engineering. Their research findings 

are both important and promising. Research is showing promise of future 

success because collaborative applications have the potential for reducing 

software engineering costs. 

https://assignbuster.com/software-engineering-essay-samples/



Software engineering – Paper Example Page 3

For example, an application allowing distributed users to collect software 

requirements both synchronously and asynchronously could make travel cost

smaller, as they could communicate with each other from different locations;

reduce time spent in conferences, as they could complete more tasks 

asynchronously; and cut down documentation and maintenance costs, as the

tool could automatically keep logs of events and the rationale behind design 

decisions (Diaper and Stanton 2004, p. 68). 

In much the same way, a program editor can allow programmers to work 

more simultaneously; implicit locking-unlocking can reduce the overhead of 

checking-in-checking-out data; detailed access control can reduce the 

probability of programmers not responsible for some program component 

incorrectly modifying the component; and collaborative undo-redo can lower 

the effort that is needed to recover from team incorrect activities and allow 

new participants to playback the history. Dewan’ (1993) findings have 

indicated that some of these benefits do, actually, occur in such phases of 

collaborative software engineering such as design. 

An extension of the abstraction of an editable active variable provides 

programmers with ability to control processes automatically and affords 

flexibility for implementing collaborative applications. Researchers have 

worked out the structure of several different kinds of software abstractions 

(and associated architectures) for supporting collaborative applications. 

These include abstractions that provide users with distributed sharing of a 

message bus, screen bitmaps, windows, widgets, and text buffers (Dewan 

and Choudhary 1995, p. 34). 

https://assignbuster.com/software-engineering-essay-samples/



Software engineering – Paper Example Page 4

The implementations of collaborative applications are requiring effort 

because, besides single-user interaction tasks, these applications must carry 

out collaboration tasks such as: dynamically making and breaking 

connections with (possibly distantly connected) users, multiplexing input 

from and demultiplexing output to multiple users, connecting the input-

output of the users, providing executive system concurrency and access 

regulation, and offering joint undo-redo (Dewan 1993, p. 102). Usually these 

collaborative tasks may take three major forms. 

First, programmers understand the task itself, that is, the goal to be 

achieved, the time available, the series of actions that must be followed. 

Second, programmers need a shared understanding about the marked limits 

of the cooperation; that is, they need to know what is part of the cooperative

work required to be done, and what goes beyond the common workspace. 

Third, mutual understanding may be an objective itself. Programmers 

cooperate in order to discover and share some understanding in their task. 

The functionality of a collaborative application is subdivided into the 

following functions: (1) Session Management allows programmers to start, 

end, connect to, and leave sessions with collaborative applications. (2) 

Collaborative interaction presents the effect of users' commands on their 

displays. (3) Coupled system determines which of the edits made by a 

programmer are shared with another programmer and when they are 

shared. (4) Remote Undo determines the effect of programmer undos on the 

displays of other programmers. 

https://assignbuster.com/software-engineering-essay-samples/



Software engineering – Paper Example Page 5

User Awareness allows programmers be aware of the steps taken by other 

programmers, (5) Access Control prevents unauthorized programmer 

commands. (6) Concurrency Control prevents incompatible concurrent 

programmer commands. (7) Differencing points out the differences between 

two different display states created by anisochronous coupled system 

between programmers. (8) Merging merges two different display states into 

a condition of single state (Defranco-Tommarello and Deek 2005, p. 5). 

These collaborative functions are different from single-user activities 

because they are invoked only when multiple programmers are using the 

application. 

These are the functions that a collaboration infrastructure-groupware 

application generator must support. This dimensionalization of the design 

space of collaborative applications applies oneself to collaboration at the 

lowest, “ common object perception” level in alone and Crowston's 

collaboration hierarchy of coordination, group decision making, 

communication, and common object perception (Ocker 2001, p. 78). 

Examine, for example, a technology that was produced to support 

collaboration: a shared window system. 

A shared window system became a development of a single-user window 

system that provides programmers with the same programming interface as 

the latter. It provides multiple programmers with opportunity to share 

physical copies of a logical window created by a client. It also at most times 

supports some form of floor control that makes certain that, at any time, 

only one programmer can provide input to the client. A client window can be 

https://assignbuster.com/software-engineering-essay-samples/



Software engineering – Paper Example Page 6

regarded as an “ active in-core database” because it is stored in-core and 

the system automatically keeps its physical copies coherent. 

In this manner, this approach can provide programmers with the 

performance needed for supporting real-time system collaboration. In 

addition, because the programming interfaces of shared and single-user 

window systems are identical, the client is collaboration-transparent, “ that 

is, completely unaware it is being used by multiple, collaborating users” 

(Defranco-Tommarello and Deek 2005, p. 5). Considering the automation 

process, it is not having potential to do better, because a collaborative 

implementation is generated by the system without requiring the 

programmer to write any specification code. 

The distributed system technology gives applications the necessary software

flexibility and power. Separate processes can be created for different 

programmers, which can directly exchange ideas with each other to 

implement personal collaboration functions. In collaborative editing, a 

programmer interacts with an application by editing an active display of the 

data structures of the application. Different programmers edit different 

versions of the involved display and interconnection between the displays 

allows them to share their editing information without violating logicality and

authorization constraints. 

The cursor within the linkage circle acts as a user-application-controlled dial 

and shows that the combined functions are performed flexibly. Conclusion 

The area of collaborative applications is examining better computer support 

for cooperative software engineering than what has been provided by 

https://assignbuster.com/software-engineering-essay-samples/



Software engineering – Paper Example Page 7

traditional applications. Software engineering is a task characterized by 

sophisticated bending of the rules and conventions; hence, there is no 

algorithmic procedure for designing good software that enables computers 

to work together or productive cooperative tasks. 

Instead, the engineering process is a continuous test for the original concept.

It is possible that the final product has only indistinct similarity with the first 

outline. It is a process with high degrees of freedom. Therefore, better 

computer support for cooperative software can help programmers to save 

time, money, and effort in the course of prototyping useful applications. It is 

necessary to make further research on collaborative applications that cut 

down on team interaction costs in distributed collaborative software 

engineering. 

https://assignbuster.com/software-engineering-essay-samples/


	Software engineering

