Master of engineering in internetworking engineering essay

Engineering

Lab Assignment #3

IPv4 Addressing

INWK 6111

SECTION - 1

Submitted By: Saair Ali QureshiB00618386

Question No. 1

Binary

Decimal

MSC128+64+32+16+8+4+2LSB+110011000

152

00001010

10

10100001

161

01110010

114

01111111

127

11000001

193

11101100

0

0

224The following table shows example of binary numbers and their corresponding decimal values. Fill the rest of the table.

Question No. 2

What is the maximum decimal value of an eight bit number?

WEIGHT

1286432168421

TOTAL = 255

BIT

11111111

Question No. 3

Find the answer for the next two operations?

PART 1:

BINARY REPRESENTATION

Master of engineering	in	internetworking	_	Paper	Exampl	е
-----------------------	----	-----------------	---	-------	--------	---

Page 6

1

1

0

0

0

1

0

0

AND

PART 2:

BINARY REPRESENTATION

PORTION

Part 2:

DOTTED DECIMAL REPRESENTATION

20890125519200206400

AND

BINARY REPRESENTATION

| ------|
| 00010100 01011011 00000000 00000001 | IP ADDRESS_AND_ | 11111111
11000000 01000000_00000000 | _SUBNET MASK____

| 00010100 01000000 00000000 00000000 | NETWORK PORTION

Question No. 5

Identify the class of each IP address and write the network and the host components.

Address

Class

Network

Host

172. 16. 1. 1B172. 16. 0. 00. 0. 1. 1245. 233. 1. 1EUndefinedUndefined15. 0. 16. 9A15. 0. 0. 00. 0. 16. 9180. 25. 0. 1B180. 25. 0. 00. 0. 0. 1125. 125. 125. 125A125. 0. 0. 00. 125. 125. 125192. 168. 6. 1C192. 168. 6. 00. 0. 0. 110. 10. 10. 0A10. 0. 0. 0. 0. 10. 10. 0

Question No. 6

How many network IDs and host IDs is available in classes A, B, and C?

ONetwork (7 bits)Host (24 bits)

Class A

Total Number of Networks = $2^7 = 128$

Total Available Hosts = $(2^24) - 2 = 16777214$

10Network (14 bits)Host (16 bits)

Class B

Total Number of Networks = $2^14 = 16384$

Total Available Hosts = $(2^16) - 2 = 65534$

110Network (21 bits)Host (8 bits)

Class C

Total Number of Networks = $2^21 = 2097152$

Total Available Hosts = $(2^8) - 2 = 62$

Question No. 7

Determine the subnet mask, the network ID, and the broadcast address in the following. 201. 212. 10. 40/29

DOTTED DECIMAL REPRESENTATION

| 210. 212. 10. 40 | NETWORK PORTION

| 210. 212. 10. 47 | BROADCAST ADDRESS

BINARY REPRESENTATION

| 11001001 11010100 00001010 00101| 000 | IP ADDRESS AND | 11111111 11111111 1111111 11111 000 | SUBNET MASK

| 11001001 11010100 00001010 00101| 000 | NETWORK **PORTION**

| 11001001 11010100 00001010 00101| 111 | BROADCAST **ADDRESS**

115. 16. 193. 6/21

DOTTED DECIMAL REPRESENTATION

| 115. 16. 193. 6 | IP ADDRESS AND | 255. 255. 248. 0 | SUBNET MASK

| 115. 16. 192. 0 | NETWORK PORTION

| 115. 16. 199. 255 | BROADCAST ADDRESS

BINARY REPRESENTATION

| 01110011 00010000 11000| 001 00000110 | IP ADDRESS AND | 11111111 11111111 11111 | 000 00000000 | SUBNET MASK

| 01110011 00010000 11000| 000 00000000 | NETWORK PORTION

| 01110011 00010000 11000| 111 11111111 | BROADCAST ADDRESS

128. 16. 54. 13/30

DOTTED DECIMAL REPRESENTATION

| 128. 16. 54. 13 | IP ADDRESS_AND_ | 255. 255. 252 | _SUBNET

| 128. 16. 54. 12 | NETWORK PORTION

| 128. 16. 54. 15 | BROADCAST ADDRESS

BINARY REPRESENTATION

| 10000000 00010000 00110110 000011| 00 | NETWORK PORTION

| 10000000 00010000 00110110 000011| 11 | BROADCAST ADDRESS

153. 50. 6. 27/25

DOTTED DECIMAL REPRESENTATION

153. 50. 6. 27 IP ADDRESS_AND_	255. 255. 255	 . 128 _ SUBNET
MASK		

| 153. 50. 6. 0 | NETWORK PORTION | 153. 50. 6. 127 | BROADCAST ADDRESS BINARY REPRESENTATION

| 10011001 00110010 00000110 0| 0000000 | NETWORK PORTION

| 10011001 00110010 00000110 0| 1111111 | BROADCAST ADDRESS

Question No. 8

Is it possible to further subnet the previous IP address? How many subnets can be created, if any? How many host in each? Note: We can make subnet up to 30th bit in the 32-bit IP address.

201, 212, 10, 40/29

In the case, we can borrow one more bit from the host part to make subnets.

Following will be the total number subnets and usable host Ids. CLASS C

ADDRESS

-----| NETWORK PORTION------SUBNET | HOST PORTION

11111| 000Number of Subnets = $2^$ (subnet bits) = $2^5 = 32$ SubnetsNumber of Usable Host ID = $[2^{(host bits)}] - 2 = (2^3) - 2 = 8-2 =$ 6 hosts / subnets

115, 16, 193, 6/21

In the case, we can borrow 9 more bits from the host part to make subnets. Following will be the total number subnets and usable host Ids. CLASS A **ADDRESS**

NETWORK PORTION |----- SUBNET----- - | HOST **PORTION**

000 0000000Number of Subnets = $2^{(subnet bits)} = 2^{13} = 8192$ SubnetsNumber of Usable Host ID = $[2^{(host bits)}] - 2 = (2^{12}) - 2 =$ 4096-2 = 4094 hosts / subnets

128, 16, 54, 13/30

In this scenario, we cannot borrow any bit from the host part to make the subnets as we at-least require 4 host address (i. e. 2 host for point to point communication, one for network address and one for broadcast address).

153, 50, 6, 27/25

In the case, we can borrow 5 more bits from the host part to make subnet. Following will the total number subnets and usable host Ids. CLASS B

ADDRESS

-----NETWORK PORTION--- |---- SUBNET-----| HOST PORTION

11111111 1 $| 0000000Number of Subnets = 2^ (subnet bits) = 2^9 = 512$

SubnetsNumber of Usable Host ID = $[2^{(host bits)}] - 2 = (2^7) - 2 = 128-2$

= 126 hosts / subnets

Question No. 9

Which of the following address is invalid? 111. 12. 10. 4/25

DOTTED DECIMAL REPRESENTATION

| 111. 12. 10. 4 | IP ADDRESS AND | 255. 255. 255. 128 | SUBNET MASK

- | 111. 12. 10. 0 | NETWORK PORTION
- | 111. 12. 10. 1 | FIRST HOST ADDRESS
- | 111. 12. 10. 126 | LAST HOST ADDRESS
- | 111. 12. 10. 127 | BROADCAST ADDRESS

BINARY REPRESENTATION

NETWORK PART SUBNET PART HOST **PART**

| 01101111 | 00001100 00001010 0| 0000100 | IP ADDRESS AND |

11111111 | 11111111 11111111 1 | 0000000 | SUBNET MASK

| 01101111 | 00001100 00001010 0| 0000000 | NETWORK PORTION

| 01101111 | 00001100 00001010 0| 0000001 | FIRST HOST ADDRESS

| 01101111 | 00001100 00001010 0| 11111110 | LAST HOST ADDRESS

| 01101111 | 00001100 00001010 0| 1111111 | BROADCAST ADDRESS

Yes, The IP address 111. 12. 10. 4 is a valid host address because it does not fall into either network address or broadcast address. 18. 145. 192. 1/17

DOTTED DECIMAL REPRESENTATION

18. 145.	192.	1 IP	ADDRESS	_AND_	_ 255.	255.	128.	0 _	SUBNET
MASK									

- | 18. 145. 128. 0 | NETWORK PORTION
- | 18. 145. 128. 1 | FIRST HOST ADDRESS
- | 18. 145. 255. 254 | LAST HOST ADDRESS

| 18. 145. 255. 255 | BROADCAST ADDRESS

BINARY REPRESENTATION

_NETWORK PARTSUBN	NET PART	HOST
PART		
00010100 10010001 1 1000000 00	0000001 IP ADDRESS	5_AND_
11111111 11111111 1 0000000 000	000000 SUBNET MA	SK

| 00010100 | 10010001 1| 0000000 00000001 | FIRST HOST ADDRESS

| 00010100 | 10010001 1| 1111111 11111110 | LAST HOST ADDRESS

Yes, The IP addresses 18. 145. 192. 1is a valid host address because it does not fall into either network address or broadcast address. 125. 23. 13. 11/31We can not further subnet the subnetted IP address 125. 23. 13. 11/31 as we atleast require 2 bit to represent 4 hosts (i. e to assign IP address to 2 hosts and one for network and one for broadcast). 22. 0. 0. 2/9

DOTTED DECIMAL REPRESENTATION

| 22. 0. 0. 0 | NETWORK PORTION

| 22. 0. 0. 1 | FIRST HOST ADDRESS

| 22. 127. 255. 254 | LAST HOST ADDRESS

| 22. 127. 255. 255 | BROADCAST ADDRESS

BINARY REPRESENTATION

_NETWORK PART	_SUBNET PA	ART	_HOST
PART			
00010110 0 0000000 000	000000 00000010	IP ADDRESS	_AND_
11111111 1 0000000 0000	00000000000000000	SUBNET MAS	5K

| 00010110 | 0| 0000000 00000000 00000001 | FIRST HOST ADDRESS

| 00010110 | 0| 1111111 11111111 11111110 | LAST HOST ADDRESS

| 00010110 | 0| 1111111 11111111 1111111 | BROADCAST ADDRESS

Yes, The IP addresses 22. 0. 02 is a valid host address because it does not fall into either network address or broadcast address.

Question No. 10

What is the minimum and maximum number of subnet bits in a Class A address? Give the subnets of both cases.

Minimum Subnets from Class A Address 10. 128. 0. 1/9 CLASS A ADDRESS

SubnetsNumber of Usable Host $ID = [2^{(host bits)}] - 2 = (2^{24}) - 2 =$ 8388608-2 = 8388606 hosts / subnets

Maximum Subnets from Class A Address 10, 128, 192, 4/30 **CLASS A ADDRESS**

NETWORK PORTION |-----SUBNET----- | HOST PORTION 11111111 111111| 00Number of Subnets = $2^$ (subnet bits) = 2^2 = 4194304 SubnetsNumber of Usable Host ID = $[2^{(host bits)}] - 2 = (2^2) - 2$ = 4-2 = 2 hosts / subnets

Question No. 10

Using the address 172, 16, 0, 0/16 assign subnet addresses to the network in the following figure. The serial links should be use masks of 30-bit length. Choose any mask length for the other networks. Network clouds are connected to each other by routers. 172. 16. 64. 0/1819111212221

172. 16. 128. 8/30

172, 16, 128, 16/30

172, 16, 128, 4/30

172. 16. 196. 0/22172. 16. 200. 0/22172. 16. 208. 0/22

- 172. 16. 216. 12/30
- 192. 16. 128. 20/30
- 172. 16. 216. 8/30
- 172. 16. 216. 4/30
- 172. 16. 216. 16/30
- 192. 16. 128. 24/30
- 172. 16. 199. 0/25172. 16. 198. 128/25172. 16. 198. 0/25172. 16. 197.
- 128/25172. 16. 197. 0/25172. 16. 196. 128/25