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Integer Programming 9 The linear-programming models that have been 

discussed thus far all have been continuous, in the sense that decision 

variables are allowed to be fractional. Often this is a realistic assumption. For

instance, we might 3 easily produce 102 4 gallons of a divisible good such as

wine. It also might be reasonable to accept a solution 1 giving an hourly 

production of automobiles at 58 2 if the model were based upon average 

hourly production, and the production had the interpretation of production 

rates. At other times, however, fractional solutions are not realistic, and we 

must consider the optimization problem: n 

Maximize j= 1 cjxj, subject to: n j= 1 ai j x j = bi xj ? 0 x j integer (i = 1, 

2, . . . , m), ( j = 1, 2, . . . , n), (for some or all j = 1, 2, . . . , n). This problem 

is called the (linear) integer-programming problem. It is said to be a mixed 

integer program when some, but not all, variables are restricted to be 

integer, and is called a pure integer program when all decision variables 

must be integers. As we saw in the preceding chapter, if the constraints are 

of a network nature, then an integer solution can be obtained by ignoring the

integrality restrictions and solving the resulting linear program. 

In general, though, variables will be fractional in the linear-programming 

solution, and further measures must be taken to determine the integer-

programming solution. The purpose of this chapter is twofold. First, we will 

discuss integer-programming formulations. This should provide insight into 

the scope of integer-programming applications and give some indication of 

why many practitioners feel that the integer-programming model is one of 

the most important models in managementscience. Second, we consider 

basic approaches that have been developed for solving integer and mixed-
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integer programming problems. . 1 SOME INTEGER-PROGRAMMING MODELS 

Integer-programming models arise in practically every area of application of 

mathematical programming. To develop a preliminary appreciation for the 

importance of these models, we introduce, in this section, three areas where 

integer programming has played an important role in supporting managerial 

decisions. We do not provide the most intricate available formulations in 

each case, but rather give basic models and suggest possible extensions. 

272 9. 1 Some Integer-Programming Models 273 

Capital Budgeting In a typical capital-budgeting problem, decisions involve 

the selection of a number of potential investments. The investment decisions

might be to choose among possible plant locations, to select a con? guration 

of capital equipment, or to settle upon a set of research-and-development 

projects. Often it makes no sense to consider partial investments in these 

activities, and so the problem becomes a go–no-go integer program, where 

the decision variables are taken to be x j = 0 or 1, indicating that the jth 

investment is rejected or accepted. 

Assuming that c j is the contribution resulting from the jth investment and 

that ai j is the amount of resource i, such as cash or manpower, used on the 

jth investment, we can state the problem formally as: n Maximize j= 1 cjxj, 

subject to: n j= 1 ai j x j ? bi xj = 0 or (i = 1, 2, . . . , m), 1 ( j = 1, 2, . . . , n). 

The objective is to maximize total contribution from all investments without 

exceeding the limited availability bi of any resource. One important special 

scenario for the capital-budgeting problem involves cash-? ow constraints. 
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In this case, the constraints n j= 1 ai j xi ? bi re? ect incremental cash 

balance in each period. The coef? cients ai j represent the net cash ? ow from

investment j in period i. If the investment requires additional cash in period i,

then ai j > 0, while if the investment generates cash in period i, then ai j < 0.

The righthand-side coef? cients bi represent the incremental exogenous cash

? ows. If additional funds are made available in period i, then bi > 0, while if 

funds are withdrawn in period i, then bi < 0. 

These constraints state that the funds required for investment must be less 

than or equal to the funds generated from prior investments plus exogenous 

funds made available (or minus exogenous funds withdrawn). The capital-

budgeting model can be made much richer by including logical 

considerations. Suppose, for example, that investment in a new product line 

is contingent upon previous investment in a new plant. This contingency is 

modeled simply by the constraint x j ? xi , which states that if xi = 1 and 

project i (new product development) is accepted, then necessarily x j = 1 

and project j (construction of a new plant) must be accepted. 

Another example of this nature concerns con? icting projects. The constraint 

x1 + x2 + x3 + x4 ? 1, for example, states that only one of the ? rst four 

investments can be accepted. Constraints like this commonly are called 

multiple-choice constraints. By combining these logical constraints, the 

model can incorporate many complex interactions between projects, in 

addition to issues of resource allocation. The simplest of all capital-budgeting

models has just one resource constraint, but has attracted much attention in 

the management-science literature. It is stated as: n Maximize j= 1 jxj, 274 

Integer Programming 9. 1 subject to: n j= 1 a j x j ? b, xj = 0 or 1 ( j = 1, 2, . .
https://assignbuster.com/integer-programming/
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. , n). Usually, this problem is called the 0–1 knapsack problem, since it is 

analogous to a situation in which a hiker must decide which goods to include 

on his trip. Here c j is the ‘‘ value’’ or utility of including good j, which weighs

a j > 0 pounds; the objective is to maximize the ‘‘ pleasure of the trip,’’ 

subject to the weight limitation that the hiker can carry no more than b 

pounds. The model is altered somewhat by allowing more than one unit of 

any good to be taken, by writing x j ? and x j -integer in place of the 0–1 

restrictions on the variables. The knapsack model is important because a 

number of integer programs can be shown to be equivalent to it, and further,

because solution procedures for knapsack models have motivated 

procedures for solving general integer programs. Warehouse Location In 

modeling distribution systems, decisions must be made about tradeoffs 

between transportation costs and costs for operating distribution centers. As 

an example, suppose that a manager must decide which of n warehouses to 

use for meeting the demands of m customers for a good. 

The decisions to be made are which warehouses to operate and how much to

ship from any warehouse to any customer. Let yi = xi j 1 if warehouse i is 

opened, 0 if warehouse i is not opened; = Amount to be sent from 

warehouse i to customer j. The relevant costs are: f i = Fixed operating cost 

for warehouse i, ifopened (for example, a cost to lease the warehouse), ci j =

Per-unit operating cost at warehouse i plus the transportation cost for 

shipping from warehouse i to customer j. There are two types of constraints 

for the model: i) the demand d j of each customer must be ? led from the 

warehouses; and ii) goods can be shipped from a warehouse only if it is 

opened. The model is: m n m Minimize i= 1 j= 1 ci j xi j + f i yi , i= 1 (1) 
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subject to: m xi j i= 1 n j= 1 = dj ? n j= 1 ( j = 1, 2, . . . , n), (i = 1, 2, . . . , 

m), (i = 1, 2, . . . , m; j = 1, 2, . . . , n), (i = 1, 2, . . . , m). (2) xi j ? yi ? xi j ? 0 

yi = 0 dj? ? 0 or 1 ? (3) 9. 1 Some Integer-Programming Models 275 The 

objective function incorporates transportation and variable warehousing 

costs, in addition to ? xed costs for operating warehouses. 

The constraints (2) indicate that each customer’s demand must be met. The 

summation over the shipment variables xi j in the ith constraint of (3) is the 

amount of the good shipped from warehouse i. When the warehouse is not 

opened, yi = 0 and the constraint speci? es that nothing can be shipped from

the warehouse. On the other hand, when the warehouse is opened and yi = 

1, the constraint simply states that the amount to be shipped from 

warehouse i can be no larger than the total demand, which is always true. 

Consequently, constraints (3) imply restriction (ii) as proposed above. 

Although oversimpli? ed, this model forms the core for sophisticated and 

realistic distribution models incorporating such features as: 1. multi-echelon 

distribution systems from plant to warehouse to customer; 2. capacity 

constraints on both plant production and warehouse throughput; 3. 

economies of scale in transportation and operating costs; 4. service 

considerations such as maximum distribution time from warehouses to 

customers; 5. multiple products; or 6. conditions preventing splitting of 

orders (in the model above, the demand for any customer can be supplied 

from several warehouses). 

These features can be included in the model by changing it in several ways. 

For example, warehouse capacities are incorporated by replacing the term 
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involving yi in constraint (3) with yi K i , where K i is the throughput capacity 

of warehouse i; multi-echelon distribution may require triple-subscripted 

variables xi jk denoting the amount to be shipped, from plant i to customer k

through warehouse j. Further examples of how the simple warehousing 

model described here can be modi? ed to incorporate the remaining features

mentioned in this list are given in the exercises at the end of the chapter. 

Scheduling The entire class of problems referred to as sequencing, 

scheduling, and routing are inherently integer programs. Consider, for 

example, the scheduling of students, faculty, and classrooms in such a way 

that the number of students who cannot take their ? rst choice of classes is 

minimized. There are constraints on the number and size of classrooms 

available at any one time, the availability of faculty members at particular 

times, and the preferences of the students for particular schedules. Clearly, 

then, the ith student is scheduled for the jth class during the nth time period 

or not; hence, such a variable is either zero or one. 

Other examples of this class of problems include line-balancing, critical-path 

scheduling with resource constraints, and vehicle dispatching. As a speci? c 

example, consider the scheduling of airline ? ight personnel. The airline has a

number of routing ‘‘ legs’’ to be ? own, such as 10 A. M. New York to 

Chicago, or 6 P. M. Chicago to Los Angeles. The airline must schedule its 

personnel crews on routes to cover these ? ights. One crew, for example, 

might be scheduled to ? y a route containing the two legs just mentioned. 

The decision variables, then, specify the scheduling of the crews to routes: 1 

if a crew is assigned to route j, xj = 0 otherwise. Let 1 if leg i is included on 
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route j, ai j = 0 otherwise, and The coef? cients ai j de? ne the acceptable 

combinations of legs and routes, taking into account such characteristics as 

sequencing of legs for making connections between ? ights and for including 

in the routes ground time for maintenance. The model becomes: n c j = Cost 

for assigning a crew to route j. Minimize j= 1 cjxj, 276 Integer Programming 

9. 1 subject to: n j= 1 ai j x j = 1 xj = 0 or 1 (i = 1, 2, . . , m), ( j = 1, 2, . . . , 

n). (4) The ith constraint requires that one crew must be assigned on a route 

to ? y leg i. An alternative formulation permits a crew to ride as passengers 

on a leg. Then the constraints (4) become: n j= 1 ai j x j ? 1 n j= 1 (i = 1, 

2, . . . , m). (5) If, for example, a1 j x j = 3, then two crews ? y as passengers 

on leg 1, possibly to make connections to other legs to which they have been

assigned for duty. These airline-crew scheduling models arise in many other 

settings, such as vehicle delivery problems, political districting, and 

computer data processing. 

Often model (4) is called a set-partitioning problem, since the set of legs will 

be divided, or partitioned, among the various crews. With constraints (5), it is

called a set-covering problem, since the crews then will cover the set of legs.

Another scheduling example is the so-called traveling salesman problem. 

Starting from his home, a salesman wishes to visit each of (n ? 1) other cities

and return home at minimal cost. He must visit each city exactly once and it 

costs ci j to travel from city i to city j. What route should he select? If we let 

xi j = n n 1 0 if he goes from city i to city j, otherwise, e may be tempted to 

formulate his problem as the assignment problem: Minimize i= 1 j= 1 ci j xi 

j , subject to: n i= 1 n j= 1 xi j = 1 xi j = 1 xi j ? 0 ( j = 1, 2, . . . , n), (i = 1, 

2, . . . , n), (i = 1, 2, . . . , n; j = 1, 2, . . . , n). The constraints require that the 
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salesman must enter and leave each city exactly once. Unfortunately, the 

assignment model can lead to infeasible solutions. It is possible in a six-city 

problem, for example, for the assignment solution to route the salesman 

through two disjoint subtours of the cities instead of on a single trip or tour. 

See Fig. 9. 1. ) Consequently, additional constraints must be included in 

order to eliminate subtour solutions. There are a number of ways to 

accomplish this. In this example, we can avoid the subtour solution of Fig. 9. 

1 by including the constraint: x14 + x15 + x16 + x24 + x25 + x26 + x34 + 

x35 + x36 ? 1. 9. 2 Formulating Integer Programs 277 Figure 9. 1 Disjoint 

subtours. This inequality ensures that at least one leg of the tour connects 

cities 1, 2, and 3 with cities 4, 5, and 6. 

In general, if a constraint of this form is included for each way in which the 

cities can be divided into two groups, then subtours will be eliminated. The 

problem with this and related approaches is that, with n cities, (2n ? 1) 

constraints of this nature must be added, so that the formulation becomes a 

very large integer-programming problem. For this reason the traveling 

salesman problem generally is regarded as dif? cult when there are many 

cities. The traveling salesman model is used as a central component of many

vehicular routing and scheduling models. It also arises in production 

scheduling. 

For example, suppose that we wish to sequence (n ? 1) jobs on a single 

machine, and that ci j is the cost for setting up the machine for job j, given 

that job i has just been completed. What scheduling sequence for the jobs 

gives the lowest total setup costs? The problem can be interpreted as a 

traveling salesman problem, in which the ‘‘ salesman’’ corresponds to the 
https://assignbuster.com/integer-programming/
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machine which must ‘‘ visit’’ or perform each of the jobs. ‘‘ Home’’ is the 

initial setup of the machine, and, in some applications, the machine will have

to be returned to this initial setup after completing all of the jobs. 

That is, the ‘‘ salesman’’ must return to ‘‘ home’’ after visiting the ‘‘ cities. ’’ 

9. 2 FORMULATING INTEGER PROGRAMS The illustrations in the previous 

section not only have indicated speci? c integer-programming applications, 

but also have suggested how integer variables can be used to provide broad 

modeling capabilities beyond those available in linear programming. In many

applications, integrality restrictions re? ect natural indivisibilities of the 

problem under study. For example, when deciding how many nuclear aircraft

carriers to have in the U. S. 

Navy, fractional solutions clearly are meaningless, since the optimal number 

is on the order of one or two. In these situations, the decision variables are 

inherently integral by the nature of the decision-making problem. This is not 

necessarily the case in every integer-programming application, as illustrated 

by the capitalbudgeting and the warehouse-location models from the last 

section. In these models, integer variables arise from (i) logical conditions, 

such as if a new product is developed, then a new plant must be 

constructed, and from (ii) non-linearities such as ? ed costs for opening a 

warehouse. Considerations of this nature are so important for modeling that 

we devote this section to analyzing and consolidating speci? c 

integerprogramming formulation techniques, which can be used as tools for 

a broad range of applications. Binary (0–1) Variables Suppose that we are to 

determine whether or not to engage in the following activities: (i) to build a 

new plant, (ii) to undertake an advertising campaign, or (iii) to develop a new
https://assignbuster.com/integer-programming/
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product. In each case, we must make a yes–no or so-called go–no–go 

decision. 

These choices are modeled easily by letting x j = 1 if we engage in the jth 

activity and x j = 0 otherwise. Variables that are restricted to 0 or 1 in this 

way are termed binary, bivalent, logical, or 0–1 variables. Binary variables 

are of great importance because they occur regularly in many model 

formulations, particularly in problems addressing long-range and high-cost 

strategic decisions associated with capital-investment planning. If, further, 

management had decided that at most one of the above three activities can 

be pursued, the 78 Integer Programming 9. 2 following constraint is 

appropriate: 3 j= 1 x j ? 1. As we have indicated in the capital-budgeting 

example in the previous section, this restriction usually is referred to as a 

multiple-choice constraint, since it limits our choice of investments to be at 

most one of the three available alternatives. Binary variables are useful 

whenever variables can assume one of two values, as in batch processing. 

For example, suppose that a drug manufacturer must decide whether or not 

to use a fermentation tank. 

If he uses the tank, the processingtechnologyrequires that he make B units. 

Thus, his production y must be 0 or B, and the problem can be modeled with 

the binary variable x j = 0 or 1 by substituting Bx j for y everywhere in the 

model. Logical Constraints Frequently, problem settings impose logical 

constraints on the decision variables (like timing restrictions, contingencies, 

or con? icting alternatives), which lend themselves to integer-programming 

formulations. The following discussion reviews the most important instances 

of these logical relationships. Constraint Feasibility 
https://assignbuster.com/integer-programming/
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Possibly the simplest logical question that can be asked in mathematical 

programming is whether a given choice of the decision variables satis? es a 

constraint. More precisely, when is the general constraint f (x1 , x2 , . . . , 

xn ) ? b (6) satis? ed? We introduce a binary variable y with the 

interpretation: y= and write 0 1 if the constraint is known to be satis? ed, 

otherwise, f (x1 , x2 , . . . , xn ) ? By ? b, (7) where the constant B is chosen 

to be large enough so that the constraint always is satis? ed if y = 1; that is, 

for every possible choice of the decision variables x1 , x2 , . . . xn at our 

disposal. Whenever y = 0 gives a feasible solution to constraint (7), we know

that constraint (6) must be satis? ed. In practice, it is usually very easy to 

determine a large number to serve as B, although generally it is best to use 

the smallest possible value of B in order to avoid numerical dif? culties 

during computations. Alternative Constraints f (x1 , x2 , . . . , xn ) ? b + B, 

Consider a situation with the alternative constraints: f 1 (x1 , x2 , . . . , xn ) ? 

b1 , f 2 (x1 , x2 , . . . , xn ) ? b2 . At least one, but not necessarily both, of 

these constraints must be satis? d. This restriction can be modeled by 

combining the technique just introduced with a multiple-choice constraint as 

follows: f 1 (x1 , x2 , . . . , xn ) ? B1 y1 ? b1 , f 2 (x1 , x2 , . . . , xn ) ? B2 y2 ? 

b2 , y1 + y2 ? 1, y1 , y2 binary. 9. 2 Formulating Integer Programs 279 The 

variables y1 and y2 and constants B1 and B2 are chosen as above to 

indicate when the constraints are satis? ed. The multiple-choice constraint y1

+ y2 ? 1 implies that at least one variable y j equals 0, so that, as required, 

at least one constraint must be satis? ed. 

We can save one integer variable in this formulation by noting that the 

multiple-choice constraint can be replaced by y1 + y2 = 1, or y2 = 1 ? y1 , 
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since this constraint also implies that either y1 or y2 equals 0. The resulting 

formulation is given by: f 1 (x1 , x2 , . . . , xn ) ? B1 y1 ? b1 , f 2 (x1 , 

x2 , . . . , xn ) ? B2 (1 ? y1 ) ? b2 , y1 = 0 or 1. As an illustration of this 

technique, consider again the custom-molder example from Chapter 1. That 

example included the constraint 6x1 + 5x2 ? 60, (8) which represented the 

production capacity for producing x1 hundred cases of six-ounce glasses and

x2 hundred cases of ten-ounce glasses. 

Suppose that there were an alternative production process that could be 

used, having the capacity constraint 4x1 + 5x2 ? 50. (9) Then the decision 

variables x1 and x2 must satisfy either (8) or (9), depending upon which 

production process is selected. The integer-programming formulation 

replaces (8) and (9) with the constraints: 6x1 + 5x2 ? 100y ? 60, 4x1 + 5x2 ?

100(1 ? y) ? 50, y= 0 or 1. In this case, both B1 and B2 are set to 100, which 

is large enough so that the constraint is not limiting for the production 

process not used. Conditional Constraints These constraints have the form: f 

1 (x1 , x2 , . . . xn ) > b1 implies that f 2 (x1 , x2 , . . . , xn ) ? b2 . Since this 

implication is not satis? ed only when both f 1 (x1 , x2 , . . . , xn ) > b1 and f 

2 (x1 , x2 , . . . , xn ) > b2 , the conditional constraint is logically equivalent 

to the alternative constraints f 1 (x1 , x2 , . . . , xn ) ? b1 and/or f 2 (x1 , x2 , .

. . , xn ) ? b2 , where at least one must be satis? ed. Hence, this situation can

be modeled by alternative constraints as indicated above. k-Fold Alternatives

Suppose that we must satisfy at least k of the constraints: f j (x1 , x2 , . . . , 

xn ) ? b j ( j = 1, 2, . . . , p). 

For example, these restrictions may correspond to manpower constraints for 

p potential inspection systems for quality control in a production process. If 
https://assignbuster.com/integer-programming/
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management has decided to adopt at least k inspection systems, then the k 

constraints specifying the manpower restrictions for these systems must be 

satis? ed, and the 280 Integer Programming 9. 2 remaining constraints can 

be ignored. Assuming that B j for j = 1, 2, . . . , p, are chosen so that the 

ignored constraints will not be binding, the general problem can be 

formulated as follows: f j (x1 , x2 , . . . , xn ) ? B j (1 ? y j ) ? b j p j= 1 ( j = 1, 

2, . . , p), y j ? k, yj = 0 or 1 ( j = 1, 2, . . . , p). That is, y j = 1 if the jth 

constraint is to be satis? ed, and at least k of the constraints must be satis? 

ed. If we de? ne y j ? 1 ? y j , and substitute for y j in these constraints, the 

form of the resulting constraints is analogous to that given previously for 

modeling alternative constraints. Compound Alternatives The feasible region 

shown in Fig. 9. 2 consists of three disjoint regions, each speci? ed by a 

system of inequalities. The feasible region is de? ned by alternative sets of 

constraints, and can be modeled by the system: f 1 (x1 , x2 ) ? 

B1 y1 ? b1 f 2 (x1 , x2 ) ? B2 y1 ? b2 Region 1 constraints Region 2 

constraints Region 3 constraints ? f 5 (x1 , x2 ) ? B5 y3 ? b5 ? f 6 (x1 , x2 ) ? 

B6 y3 ? b6 ? f 7 (x1 , x2 ) ? B7 y3 ? b7 y1 + y2 + y3 ? 2, x1 ? 0, x2 ? 0, y1 , 

y2 , y3 binary. f 3 (x1 , x2 ) ? B3 y2 ? b3 f 4 (x1 , x2 ) ? B4 y2 ? b4 Note that 

we use the same binary variable y j for eachconstraint de? ning one of the 

regions, and that the Figure 9. 2 An example of compound alternatives. 9. 2 

Formulating Integer Programs 281 Figure 9. 3 Geometry of alternative 

constraints. constraint y1 + y2 + y3 ? implies that the decision variables x1 

and x2 lie in at least one of the required regions. Thus, for example, if y3 = 

0, then each of the constraints f 5 (x1 , x2 ) ? b5 , f 6 (x1 , x2 ) ? b6 , and f 7 

(x1 , x2 ) ? b7 is satis? ed. The regions do not have to be disjoint before we 
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can apply this technique. Even the simple alternative constraint f 1 (x1 , 

x2 ) ? b1 or f 2 (x1 , x2 ) ? b2 shown in Fig. 9. 3 contains overlapping regions.

Representing Nonlinear Functions Nonlinear functions can be represented by

integer-programming formulations. Let us analyze the most useful 

representations of this type. ) Fixed Costs Frequently, the objective function 

for a minimization problem contains ? xed costs (preliminary design costs, ? 

xed investment costs, ? xed contracts, and so forth). For example, the cost of

producing x units of a speci? c product might consist of a ? xed cost of 

setting up the equipment and a variable cost per unit produced on the 

equipment. An example of this type of cost is given in Fig. 9. 4. Assume that 

the equipment has a capacity of B units. De? ne y to be a binary variable 

that indicates when the ? xed cost is incurred, so that y = 1 when x > 0 and 

y = 0 when x = 0. 

Then the contribution to cost due to x may be written as K y + cx, with the 

constraints: x ? By, x ? 0, y = 0 or 1. As required, these constraints imply 

that x = 0 when the ? xed cost is not incurred, i. e. , when y = 0. The 

constraints themselves do not imply that y = 0 if x = 0. But when x = 0, the 

minimization will clearly 282 Integer Programming 9. 2 Figure 9. 4 A ? xed 

cost. Figure 9. 5 Modeling a piecewise linear curve. select y = 0, so that the ?

xed cost is not incurred. Finally, observe that if y = 1, then the added 

constraint becomes x ? B, which re? ects the capacity limit on the production

equipment. i) Piecewise Linear Representation Another type of nonlinear 

function that can be represented by integer variables is a piecewise linear 

curve. Figure 9. 5 illustrates a cost curve for plant expansion that contains 

three linear segments with variable costs of 5, 1, and 3 million dollars per 
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1000 items of expansion. To model the cost curve, we express any value of x

as the sum of three variables ? 1 , ? 2 , ? 3 , so that the cost for each of these

variables is linear. Hence, x = ? 1 + ? 2 + ? 3 , where 0 ? ? 1 ? 4, 0 ? ? 3 ? 5; 

and the total variable cost is given by: Cost = 5? 1 + ? 2 + 3? 3 . 0 ? ? 2 ? 6, 

10) 9. 2 Formulating Integer Programs 283 Note that we have de? ned the 

variables so that: ? 1 corresponds to the amount by which x exceeds 0, but is

less than or equal to 4; ? 2 is the amount by which x exceeds 4, but is less 

than or equal to 10; and ? 3 is the amount by which x exceeds 10, but is less 

than or equal to 15. If this interpretation is to be valid, we must also require 

that ? 1 = 4 whenever ? 2 > 0 and that ? 2 = 6 whenever ? 3 > 0. Otherwise,

when x = 2, say, the cost would be minimized by selecting ? 1 = ? 3 = 0 

and ? 2 = 2, since the variable ? 2 has the smallest variable cost. 

However, these restrictions on the variables are simply conditional 

constraints and can be modeled by introducing binary variables, as before. If 

we let w1 = w2 = 1 0 1 0 if ? 1 is at its upper bound, otherwise, if ? 2 is at its

upper bound, otherwise, then constraints (10) can be replaced by 4w1 ? ? 1 ?

4, 6w2 ? ? 2 ? 6w1 , 0 ? ? 3 ? 5w2 , w1 and w2 binary, (11) to ensure that the

proper conditional constraints hold. Note that if w1 = 0, then w2 = 0, to 

maintain feasibility for the constraint imposed upon ? 2 , and (11) reduces to 

0 ? ? 1 ? 4, If w1 = 1 and w2 = 0, then (11) reduces to ? 1 = 4, 0 ? ? 2 ? 6, 

and ? = 0. ? 2 = 0, and ? 3 = 0. Finally, if w1 = 1 and w2 = 1, then (11) 

reduces to ? 1 = 4, ? 2 = 6, and 0 ? ? 3 ? 5. Hence, we observe that there are

three feasible combinations for the values of w1 and w2 : w1 = 0, w1 = 1, 

and w1 = 1, w2 = 1 corresponding to 10 ? x ? 15 since ? 1 = 4 and ? 2 = 6. 

The same general technique can be applied to piecewise linear curves with 

https://assignbuster.com/integer-programming/



 Integer programming – Paper Example  Page 17

any number of segments. The general constraint imposed upon the 

variable ? j for the jth segment will read: L j w j ? ? j ? L j w j? 1 , where L j is 

the length of the segment. w2 = 0 corresponding to 0 ? x ? 4 w2 = 0 

corresponding to 4 ? x ? 0 since ? 2 = ? 3 = 0; since ? 1 = 4 and ? 3 = 0; 284 

Integer Programming 9. 3 Figure 9. 6 Diseconomies of scale. iii) 

Diseconomies of Scale An important special case for representing nonlinear 

functions arises when only diseconomies of scale apply— that is, when 

marginal costs are increasing for a minimization problem or marginal returns

are decreasing for a maximization problem. Suppose that the expansion cost

in the previous example now is speci? ed by Fig. 9. 6. In this case, the cost is 

represented by Cost = ? 1 + 3? 2 + 6? 3 , subject only to the linear 

constraints without integer variables, 0 ? 1 ? 4 0 ? ? 2 ? 6, 0 ? ? 3 ? 5. The 

conditional constraints involving binary variables in the previous formulation 

can be ignored if the cost curve appears in a minimization objective function,

since the coef? cients of ? 1 , ? 2 , and ? 3 imply that it is always best to set ?

1 = 4 before taking ? 2 > 0, and to set ? 2 = 6 before taking ? 3 > 0. As a 

consequence, the integer variables have been avoided completely. This 

representation without integer variables is not valid, however, if economies 

of scale are present; for example, if the function given in Fig. . 6 appears in a

maximization problem. In such cases, it would be best to select the third 

segment with variable ? 3 before taking the ? rst two segments, since the 

returns are higher on this segment. In this instance, the model requires the 

binary-variable formulation of the previous section. iv) Approximation of 

Nonlinear Functions One of the most useful applications of the piecewise 

linear representation is for approximating nonlinear functions. Suppose, for 
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example, that the expansion cost in our illustration is given by the heavy 

curve in Fig. 9. 7. 

If we draw linear segments joining selected points on the curve, we obtain a 

piecewise linear approximation, which can be used instead of the curve in 

the model. The piecewise approximation, of course, is represented by 

introducing integer variables as indicated above. By using more points on 

the curve, we can make the approximation as close as we desire. 9. 3 A 

Sample Formulation † 285 Figure 9. 7 Approximation of a nonlinear curve. 9. 

3 A SAMPLE FORMULATION † Proper placement of service facilities such as 

schools, hospitals, and recreational areas is essential to ef? cient urban 

design. Here we will present a simpli? d model for ? rehouse location. Our 

purpose is to show formulation devices of the previous section arising 

together in a meaningful context, rather than to give a comprehensive model

for the location problem per se. As a consequence, we shall ignore many 

relevant issues, including uncertainty. Assume that population is 

concentrated in I districts within the city and that district i contains pi people.

Preliminary analysis (land surveys, politics, and so forth) has limited the 

potential location of ? rehouses to J sites. Let di j ? 0 be the distance from the

center of district i to site j. 

We are to determine the ‘‘ best’’ site selection and assignment of districts 

to ? rehouses. Let yj = and xi j = 1 0 if district i is assigned to site j, 

otherwise. 1 0 if site j is selected, otherwise; The basic constraints are that 

every district should be assigned to exactly one ? rehouse, that is, J j= 1 xi j 

= 1 (i = 1, 2, . . . , I ), and that no district should be assigned to an unused 

site, that is, y j = 0 implies xi j = 0 (i = 1, 2, . . . , I ). The latter restriction can
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be modeled as alternative constraints, or more simply as: I i= 1 xi j ? y j I ( j 

= 1, 2, . . . , J ). 

Since xi j are binary variables, their sum never exceeds I , so that if y j = 1, 

then constraint j is nonbinding. If y j = 0, then xi j = 0 for all i. † This section 

may be omitted without loss of continuity. 286 Integer Programming 9. 3 

Next note that di , the distance from district i to its assigned ? rehouse, is 

given by: J di = since one xi j will be 1 and all others 0. Also, the total 

population serviced by site j is: di j xi j , j= 1 I sj = pi xi j . i= 1 Assume that a

central district is particularly susceptible to ? re and that either sites 1 and 2 

or sites 3 and 4 can be used to protect this district. 

Then one of a number of similar restrictions might be: y1 + y2 ? 2 or y3 + y4

? 2. We let y be a binary variable; then these alternative constraints become:

y1 + y2 ? 2y, y3 + y4 ? 2(1 ? y). Next assume that it costs f j (s j ) to build a ?

rehouse at site j to service s j people and that a total budget of B dollars has 

been allocated for ? rehouse construction. Then J j= 1 f j (s j ) ? B. Finally, 

one possible social-welfare function might be to minimize the distance 

traveled to the district farthest from its assigned ? rehouse, that is, to: 

Minimize D, where or, equivalently,‡ to subject to: D ? i (i = 1, 2, . . . , I ). J D 

= max di ; Minimize D, Collecting constraints and substituting above for di in 

terms of its de? ning relationship di = we set up the full model as: Minimize 

D, ‡ The inequalities D ? d imply that D ? max d . The minimization of D then 

ensures that it will actually be the i i maximum of the di . di j xi j , j= 1 9. 4 

Some Characteristics Of Integer Programs—A Sample Problem 287 subject 

to: J D? j= 1 J j= 1 I i= 1 I di j xi j ? 0 xi j = 1 xi j ? y j I pi xi j = 0 f j (s j ) ? B, (i

= 1, 2, . . . , I ), (i = 1, 2, . . . , I ), ( j = 1, 2, . . . , J ), ( j = 1, 2, . . . , J ), 
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Sj? i= 1 J j= 1 y1 + y2 ? 2y ? 0, y3 + y4 + 2y ? 2, xi j , y j , y binary (i = 1, 2, .

. . , I ; j = 1, 2, . . . , J ). At this point we might replace each function f j (s j ) 

by an integer-programming approximation to complete the model. Details 

are left to the reader. Note that if f j (s j ) contains a ? xed cost, then new ? 

xed-cost variables need not be introduced—the variable y j serves this 

purpose. The last comment, and the way in which the conditional constraint 

‘‘ y j = 0 implies xi j = 0 (i = 1, 2, . . . , I )’’ has been modeled above, indicate

that the formulation techniques of Section 9. should not be applied without 

thought. Rather, they provide a common framework for modeling and should

be used in conjunction with good modeling ‘‘ common sense. ’’ In general, it 

is best to introduce as few integer variables as possible. 9. 4 SOME 

CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM Whereas 

the simplex method is effective for solving linear programs, there is no single

technique for solving integer programs. Instead, a number of procedures 

have been developed, and the performance of any particular technique 

appears to be highly problem-dependent. 

Methods to date can be classi? ed broadly as following one of three 

approaches: i) enumeration techniques, including the branch-and-bound 

procedure; ii) cutting-plane techniques; and iii) group-theoretic techniques. 

In addition, several composite procedures have been proposed, which 

combine techniques using several of these approaches. In fact, there is a 

trend in computer systems for integer programming to include a number of 

approaches and possibly utilize them all when analyzing a given problem. In 

the sections to follow, we shall consider the ? rst two approaches in some 

detail. 
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At this point, we shall introduce a speci? c problem and indicate some 

features of integer programs. Later we will use this example to illustrate and 

motivate the solution procedures. Many characteristics of this example are 

shared by the integer version of the custommolder problem presented in 

Chapter 1. The problem is to determine z ? where: z ? = max z = 5x1 + 8x2 ,

288 Integer Programming 9. 5 subject to: x1 + x2 ? 6, 5x1 + 9x2 ? 45, x1 , 

x2 ? 0 and integer. The feasible region is sketched in Fig. 9. 8. Dots in the 

shaded region are feasible integer points. Figure 9. An integer programming 

example. If the integrality restrictions on variables are dropped, the resulting

problem is a linear program. We will call it the associated linear program. We

may easily determine its optimal solution graphically. Table 9. 1 depicts 

some of the features of the problem. Table 9. 1 Problem features. Continuous

optimum x1 x2 z 9 4 = 2. 25 15 = 3. 75 4 Round off 2 4 Infeasible Nearest 

feasible point 2 3 34 Integer optimum 0 5 40 41. 25 Observe that the optimal

integer-programming solution is not obtained by rounding the linear-

programming solution. 

The closest point to the optimal linear-program solution is not even feasible. 

Also, note that the nearest feasible integer point to the linear-program 

solution is far removed from the optimal integer point. Thus, it is not suf? 

cient simply to round linear-programming solutions. In fact, by scaling the 

righthand-side and cost coef? cients of this example properly, we can 

construct a problem for which the optimal integerprogramming solution lies 

as far as we like from the rounded linear-programming solution, in either z 

value or distance on the plane. 
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In an example as simple as this, almost any solution procedure will be 

effective. For instance, we could easily enumerate all the integer points with 

x1 ? 9, x2 ? 6, and select the best feasible point. In practice, the number of 

points to be considered is likely to prohibit such an exhaustive enumeration 

of potentially feasible points, and a more sophisticated procedure will have 

to be adopted. 9. 5 Branch-And-Bound 289 Figure 9. 9 Subdividing the 

feasible region. 9. 5 BRANCH-AND-BOUND Branch-and-bound is essentially a 

strategy of ‘‘ divide and conquer. ’ The idea is to partition the feasible region 

into more manageable subdivisions and then, if required, to further partition 

the subdivisions. In general, there are a number of ways to divide the 

feasible region, and as a consequence there are a number of branch-and-

bound algorithms. We shall consider one such technique, for problems with 

only binary variables, in Section 9. 7. For historical reasons, the technique 

that will be described next usually is referred to as the branch-and-bound 

procedure. Basic Procedure An integer linear program is a linear program 

further constrained by the integrality restrictions. 

Thus, in a maximization problem, the value of the objective function, at the 

linear-program optimum, will always be an upper bound on the optimal 

integer-programming objective. In addition, any integer feasible point is 

always a lower bound on the optimal linear-program objective value. The 

idea of branch-and-bound is to utilize these observations to systematically 

subdivide the linearprogramming feasible region and make assessments of 

the integer-programming problem based upon these subdivisions. The 

method can be described easily by considering the example from the 

previous section. 
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At ? rst, the linear-programming region is not subdivided: The integrality 

restrictions are dropped and the associated linear program is solved, giving 

an optimal value z 0 . From our remark above, this gives the upper 1 bound 

on z ? , z ? ? z 0 = 41 4 . Since the coef? cients in the objective function are 

integral, z ? must be integral ? ? 41. and this implies that z 1 3 Next note that

the linear-programming solution has x1 = 2 4 and x2 = 3 4 . Both of these 

variables must be integer in the optimal solution, and we can divide the 

feasible region in an attempt to make either integral. 

We know that, in any integer programming solution, x2 must be either an 

integer ? 3 or an integer ? 4. Thus, our ? rst subdivision is into the regions 

where x2 ? 3 and x2 ? 4 as displayed by the shaded regions L 1 and L 2 in 

Fig. 9. 9. Observe that, by making the subdivisions, we have excluded the 

old linear-program solution. (If we selected x1 instead, the region would be 

subdivided with x1 ? 2 and x1 ? 3. ) The results up to this point are pictured 

conveniently in an enumeration tree (Fig. 9. 10). Here L 0 represents the 

associated linear program, whose optimal solution has been included within 

the L 0 box, and the upper bound on z ? ppears to the right of the box. The 

boxes below correspond to the new subdivisions; the constraints that 

subdivide L 0 are included next to the lines joining the boxes. Thus, the 

constraints of L 1 are those of L 0 together with the constraint x2 ? 4, while 

the constraints of L 2 are those of L 0 together with the constraint x2 ? 3. 

The strategy to be pursued now may be apparent: Simply treat each 

subdivision as we did the original problem. Consider L 1 ? rst. Graphically, 

from Fig. 9. 9 we see that the optimal linear-programming solution 290 

Integer Programming 9. 5 Figure 9. 10 Enumeration tree. 
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Figure 9. 11 Subdividing the region L 1 . 9 1 lies on the second constraint 

with x2 = 4, giving x1 = 5 (45 ? 9(4)) = 5 and an objective value z = 5 9 

+8(4) = 41. Since x1 is not integer, we subdivide L 1 further, into the regions

L 3 with x1 ? 2 and L 4 with 5 x1 ? 1. L 3 is an infeasible problem and so this 

branch of the enumeration tree no longer needs to be considered. The 

enumeration tree now becomes that shown in Fig. 9. 12. Note that the 

constraints of any subdivision are obtained by tracing back to L 0 . For 

example, L 4 contains the original constraints together with x2 ? 4 and x1 ? . 

The asterisk (? ) below box L 3 indicates that the region need not be 

subdivided or, equivalently, that the tree will not be extended from this box. 

At this point, subdivisions L 2 and L 4 must be considered. We may select 

one arbitrarily; however, in practice, a number of useful heuristics are 

applied to make this choice. For simplicity, let us select the subdivision most 

recently generated, here L 4 . Analyzing the region, we ? nd that its optimal 

solution has x1 = 1, 1 x2 = 9 (45 ? 5) = 40 9. Since x2 is not integer, L 4 

must be further subdivided into L 5 with x2 ? 4, and L 6 with x2 ? , leaving L 

2 , L 5 and L 6 yet to be considered. Treating L 5 ? rst (see Fig. 9. 13), we see

that its optimum has x1 = 1, x2 = 4, and z = 37. Since this is the best linear-

programming solution for L 5 and the linear program contains every integer 

solution in L 5 , no integer point in that subdivision can give a larger 

objective value than this point. Consequently, other points 9. 5 Branch-And-

Bound 291 Figure 9. 12 Figure 9. 13 Final subdivisions for the example. in L 5

need never be considered and L 5 need not be subdivided further. In fact, 

since x1 = 1, x2 = 4, z = 37, is a feasible solution to the original problem, z ?

37 and we now have the bounds 37 ? z ? ? 41. Without further analysis, we 

could terminate with the integer solution x1 = 1, x2 = 4, knowing that the 
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objective value of this point is within 10 percent of the true optimum. For 

convenience, the lower bound z ? ? 37 just determined has been appended 

to the right of the L 5 box in the enumeration tree (Fig. 9. 14). Although x1 =

1, x2 = 4 is the best integer point in L 5 , the regions L 2 and L 6 might 

contain better feasible solutions, and we must continue the procedure by 

analyzing these regions. 

In L 6 , the only feasible point is x1 = 0, x2 = 5, giving an objective value z =

+40. This is better than the previous integer point and thus the lower bound 

on z ? improves, so that 40 ? z ? ? 41. We could terminate with this integer 

solution knowing that it is within 2. 5 percent of the true optimum. However, 

L 2 could contain an even better integer solution. The linear-programming 

solution in L 2 has x1 = x2 = 3 and z = 39. This is the best integer point in L 

2 but is not as good as x1 = 0, x2 = 5, so the later point (in L 6 ) must 

indeed be optimal. 

It is interesting to note that, even if the solution to L 2 did not give x1 and x2

integer, but had z < 40, then no feasible (and, in particular, no integer point)

in L 2 could be as good as x1 = 0, x2 = 5, with z = 40. Thus, again x1 = 0, 

x2 = 5 would be known to be optimal. Thisobservationhas important 

computational implications, 292 Integer Programming 9. 5 Figure 9. 14 since 

it is not necessary to drive every branch in the enumeration tree to an 

integer or infeasible solution, but only to an objective value below the best 

integer solution. 

The problem now is solved and the entire solution procedure can be 

summarized by the enumeration tree in Fig. 9. 15. Figure 9. 15 Further 
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Considerations There are three points that have yet to be considered 

withrespectto the branch-and-bound procedure: i) Can the linear programs 

corresponding to the subdivisions be solved ef? ciently? ii) What is the best 

way to subdivide a given region, and which unanalyzed subdivision should be

considered next? 9. 5 Branch-And-Bound 293 iii) Can the upper bound (z = 

41, in the example) on the optimal value z ? of the integer program be 

improved while the problem is being solved? 

The answer to the ? rst question is an unquali? ed yes. When moving from a 

region to one of its subdivisions, we add one constraint that is not satis? ed 

by the optimal linear-programming solution over the parent region. 

Moreover, this was onemotivationfor the dual simplex algorithm, and it is 

natural to adopt that algorithm here. Referring to the sample problem will 

illustrate the method. The ? rst two subdivisions L 1 and L 2 in that example 

were generated by adding the following constraints to the original problem: 

For subdivision 1 : For subdivision 2 : x2 ? 4 x2 ? or or x2 ? s3 = 4 x2 + s4 = 

3 (s3 ? 0); (s4 ? 0). In either case we add the new constraint to the optimal 

linear-programming tableau. For subdivision 1, this gives: 3 1? 5 (? z) ? 4 s1 ?

4 s2 = ? 41 4 ? Constraints from the ? 1 9 9 = x1 + 4 s1 ? 4 s2 4 ? optimal 

canonical 5 1 15 ? form xj? 4 s1 + 4 s2 = 2 4 ? x2 x1 , x2 , s1 , s2 , s3 ? 0, + 

s3 = ? 4, Added constraint where s1 and s2 are slack variables for the two 

constraints in the original problem formulation. Note that the new constraint 

has been multiplied by ? 1, so that the slack variable s3 can be used as a 

basic variable. 

Since the basic variable x2 appears with a nonzero coef? cient in the new 

constraint, though, we must pivot to isolate this variable in the second 
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constraint to re-express the system as: (? z) x1 5 3 ? 4 s1 ? 4 s2 1 5 x2 ? 4 s1

+ 4 s2 1 9 + 4 s1 ? 4 s2 = = = 1 ? 41 4 , 15 4, 1 ? 4, x1 , x2 , s1 , s2 , s3 ? 0. 

5 1 ? 4 s1 + 4 s2 +s3   = 9 4, These constraints are expressed in the proper 

form for applying the dual simplex algorithm, which will pivot next to make 

s1 the basic variable in the third constraint. The resulting system is given by:

(? z) x1 x2 ? s2 ? s3 + 1 s2 + 9 s3 5 5 ? 3 s1 ? 1 s2 ? 4 s3 5 5 = ? 41, 9 = 5, 

= 4, 1 = 5, This tableau is optimal and gives the optimal linear-programming

solution over the region L 1 as x1 = 9 , x2 = 5 4, and z = 41. The same 

procedure can be used to determine the optimal solution in L 2 . When the 

linear-programming problem contains many constraints, this approach for 

recovering an optimal solution is very effective. After adding a new 

constraint and making the slack variable for that constraint basic, we always 

have a starting solution for the dual-simplex algorithm with only one basic 

variable negative. 

Usually, only a few dual-simplex pivoting operations are required to obtain 

the optimal solution. Using the primal-simplex algorithm generally would 

require many more computations. x1 , x2 , s1 , s2 , s3 ? 0. 294 Integer 

Programming 9. 5 Figure 9. 16 Issue (ii) raised above is very important since,

if we can make our choice of subdivisions in such a way as to rapidly obtain a

good (with luck, near-optimal) integer solution z , then we can eliminate 

many potential ? subdivisions immediately. Indeed, if any region has its 

linear programming value z ? , then the objective ? value of no integer point 

in that region can exceed z and the region need not be subdivided. There is 

no ? universal method for making the required choice, although several 

heuristic procedures have been suggested, such as selecting the subdivision 
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with the largest optimal linear-programming value. † Rules for determining 

which fractional variables to use in constructing subdivisions are more 

subtle. Recall that any fractional variable can be used to generate a 

subdivision. 

One procedure utilized is to look ahead one step in the dual-simplex method 

for every possible subdivision to see which is most promising. The details are

somewhat involved and are omitted here. For expository purposes, we have 

selected the fractional variable arbitrarily. Finally, the upper bound z on the 

value z ? of the integer program can be improved as we solve the problem. 

Suppose for example, that subdivision L 2 was analyzed before subdivisions 

L 5 or L 6 in our sample problem. The enumeration tree would be as shown in

Fig. 9. 16. At this point, the optimal solution must lie in either L 2 or L 4 . 

Since, however, the largest value for 5 any feasible point in either of these 

regions is 40 9 , the optimal value for the problem z ? cannot exceed 40 5 . 9

Because z ? must be integral, this implies that z ? ? 40 and the upper bound 

has been improved from the value 41 provided by the solution to the linear 

program on L 0 . In general, the upper bound is given in this way as the 

largest value of any ‘‘ hanging’’ box (one that has not been divided) in the 

enumeration tree. Summary The essential idea of branch-and-bound is to 

subdivide the feasible region to develop bounds z < z ? lt; z on z ? . For a 

maximization problem, the lower bound z is the highest value of any feasible

integer point encountered. The upper bound is given by the optimal value of 

the associated linear program or by the largest value for the objective 

function at any ‘‘ hanging’’ box. After considering a subdivision, we must 

branch to (move to) another subdivision and analyze it. Also, if either One 
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common method used in practice is to consider subdivisions on a last-

generated–? rst-analyzed basis. We used this rule in our previous example. 

Note that data to initiate the dual-simplex method mentioned above must be

stored for each subdivision that has yet to be analyzed. This data usually is 

stored in a list, with new information being added to the top of the list. When

required, data then is extracted from the top of this list, leading to the last-

generated–? rst-analyzed rule. Observe that when we subdivide a region into

two subdivisions, one of these subdivisions will be analyzed next. The data 

required for this analysis already will be in the computer core and need not 

be extracted from the list. † 9. 6 Branch-And-Bound 95 i) the linear program 

over L j is infeasible; ii) the optimal linear-programming solution over L j is 

integer; or iii) the value of the linear-programming solution z j over L j satis? 

es z j ? z (if maximizing), then L j need not be subdivided. In these cases, 

integer-programming terminology says that L j has been fathomed. † Case (i)

is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) 

fathoming by bounds. The ? ow chart in Fig. 9. 17 summarizes the general 

procedure. Figure 9. 17 Branch-and-bound for integer-programming 

maximization. † To fathom is de? ed as ‘‘ to get to the bottom of; to 

understand thoroughly. ’’ In this chapter, fathomed might be more 

appropriately de? ned as ‘‘ understood enough or already considered. ’’ 296 

Integer Programming 9. 7 Figure 9. 18 9. 6 BRANCH-AND-BOUND FOR 

MIXED-INTEGER PROGRAMS The branch-and-bound approach just described 

is easily extended to solve problems in which some, but not all, variables are

constrained to be integral. Subdivisions then are generated solely by the 

integral variables. In every other way, the procedure is the same as that 
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speci? ed above. A brief example will illustrate the method. ? = max z = ? 

3x1 ? 2x2 + 10, subject to: x1 ? 2x2+ x3 5 = 2, 2x1 + x2 xj ? 0 3 + x4 = 2 , (

j = 1, 2, 3, 4), x2 and x3 integer. The problem, as stated, is in canonical 

form, with x3 and x4 optimal basic variables for the associated linear 

program. The continuous variable x4 cannot be used to generate 

subdivisions since any value of x4 ? 0 potentially can be optimal. 

Consequently, the subdivisions must be de? ned by x3 ? 2 and x3 ? 3. The 

complete procedure is summarized by the enumeration tree in Fig. 9. 18. 1 

The solution in L 1 satis? es the integrality restrictions, so z ? ? z = 8 2 . 

The only integral variable with a fractional value in the optimal solution of L 2

is x2 , so subdivisions L 3 and L 4 are generated from this variable. Finally, 

the optimal linear-programming value of L 4 is 8, so no feasible mixed-

integer solution in that region 1 can be better than the value 8 2 already 

generated. Consequently, that region need not be subdivided and the 

solution in L 1 is optimal. The dual-simplex iterations that solve the linear 

programs in L 1 , L 2 , L 3 , and L 4 are given below in Tableau 1. The 

variables s j in the tableaus are the slack variables for the constraints added 

to generate the subdivisions. 

The coef? cients in the appended constraints are determined as we 

mentioned in the last section, by eliminating the basic variables x j from the 

new constraint that is introduced. To follow the iterations, recall that in the 

dual-simplex method, pivots are made on negative elements in the 

generating row; if all elements in this row are positive, as in region L 3 , then 

the problem is infeasible. 9. 7 Implicit Enumeration 297 9. 7 IMPLICIT 
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ENUMERATION A special branch-and-bound procedure can be given for 

integer programs with only binary variables. 

The algorithm has the advantage that it requires no linear-programming 

solutions. It is illustrated by the following example: z ? = max z = ? 8x1 ? 

2x2 ? 4x3 ? 7x4 ? 5x5 + 10, subject to: ? 3x1 ? 3x2 + x3 + 2x4 + 3x5 ? ? 2, ?

5x1 ? 3x2 ? 2x3 ? x4 + x5 ? ? 4, xj = 0 or 1 ( j = 1, 2, . . . , 5). One way to 

solve such problems is complete enumeration. List all possible binary 

combinations of the variables and select the best such point that is feasible. 

The approach works very well on a small problem such as this, where there 

are only a few potential 0–1 combinations for the variables, here 32. 

In general, though, an n-variable problem contains 2n 0–1 combinations; for 

large values of n, the exhaustive approach is prohibitive. Instead, one might 

implicitly consider every binary combination, just as every integer point was 

implicitly considered, but not necessarily evaluated, for the general problem 

via branch-and-bound. Recall that in the ordinary branch-and-bound 

procedure, subdivisions were analyzed by maintaining the linear constraints 

and dropping the integrality restrictions. Here, we adopt the opposite tactic 

of always 298 Integer Programming 9. 7 maintaining the 0–1 restrictions, but

ignoring the linear inequalities. 

The idea is to utilize a branch-and-bound (or subdivision) process to ? x some

of the variables at 0 or 1. The variables remaining to be speci? ed are called 

free variables. Note that, if the inequality constraints are ignored, the 

objective function is maximized by setting the free variables to zero, since 

their objectivefunction coef? cients are negative. For example, if x1 and x4 
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are ? xed at 1 and x5 at 0, then the free variables are x2 and x3 . Ignoring 

the inequality constraints, the resulting problem is: max [? 8(1) ? 2x2 ? 4x3 ?

7(1) ? 5(0) + 10] = max [? 2x2 ? 4x3 ? 5], subject to: x2 and x3 binary. 

Since the free variables have negative objective-function coef? cients, the 

maximization sets x2 = x3 = 0. The simplicity of this trivial optimization, as 

compared to a more formidable linear program, is what we would like to 

exploit. Returning to the example, we start with no ? xed variables, and 

consequently every variable is free and set to zero. The solution does not 

satisfy the inequality constraints, and we must subdivide to search for 

feasible solutions. One subdivision choice might be: For subdivision 1 : x1 = 

1, For subdivision 2 : x1 = 0. Now variable x1 is ? xed in each subdivision. 

By our observations above, if the inequalities are ignored, the optimal 

solution over each subdivision has x2 = x3 = x4 = x5 = 0. The resulting 

solution in subdivision 1 gives z = ? 8(1) ? 2(0) ? 4(0) ? 7(0) ? 5(0) + 10 = 2, 

9. 7 Implicit Enumeration 299 and happens to satisfy the inequalities, so that

the optimal solution to the original problem is at least 2, z ? ? 2. Also, 

subdivision 1 has been fathomed: The above solution is best among all 0–1 

combinations with x1 = 1; thus it must be best among those satisfying the 

inequalities. No other feasible 0–1 combination in subdivision 1 needs to be 

evaluated explicitly. 

These combinations have been considered implicitly. The solution with x2 = 

x3 = x4 = x5 = 0 in subdivision 2 is the same as the original solution with 

every variable at zero, and is infeasible. Consequently, the region must be 

subdivided further, say with x2 = 1 or x2 = 0, giving: The enumeration tree 
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to this point is as given in Fig. 9. 19. For subdivision 3 : For subdivision 4 : x1 

= 0, x2 = 1; x1 = 0, x2 = 0. Figure 9. 19 Observe that this tree differs from 

the enumeration trees of the previous sections. For the earlier procedures, 

the linear-programming solution used to analyze each subdivision was speci?

ed explicitly in a box. 

Here the 0–1 solution (ignoring the inequalities) used to analyze subdivisions

is not stated explicitly, since i it is known simply by setting free variables to 

zero. In subdivision 3 , for example, x1 = 0 and x2 = 1 are ? xed, and the 

free variables x3 , x4 andx5 are set to zero. Continuing to ? x variables and 

subdivide in this fashion produces the complete tree shown in Fig. 9. 20. The 

tree is not extended after analyzing subdivisions 4, 5, 7, 9, and 10, for the 

following reasons. i i) At 5 , the solution x1 = 0, x2 = x3 = 1 , with free 

variables x4 = x5 = 0, is feasible, with z = 4 , thus providing an improved 

lower bound on z ? i ii) At 7 , the solution x1 = x3 = 0, x2 = x4 = 1, and free 

variable x5 = 0, has z = 1 < 4, so that no i solution in that subdivision can be

as good as that generated at 5 . i i iii) At 9 and 10 , every free variable is ? 

xed. In each case, the subdivisions contain only a single point, which is 

infeasible, and further subdivision is not possible. i iv) At 4 , the second 

inequality (with ? xed variables x1 = x2 = 0) reads: No 0–1 values of x3 , x4 ,

or x5 ‘‘ completing’’ the ? xed variables x1 = x2 = 0 satisfy this constraint, 

since the lowest value for the lefthand side of this equation is ? when x3 = 

x4 = 1 and x5 = 0. The subdivision then has no feasible solution and need 

not be analyzed further. The last observation is completely general. If, at any

point after substituting for the ? xed variables, the sum of the remaining 

negative coef? cients in any constraint exceeds the righthand side, then the 
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region de? ned by these ? xed variables has no feasible solution. Due to the 

special nature of the 0–1 problem, there are a number of other such tests 

that can be utilized to reduce the number of subdivisions generated. The ef? 

iency of these tests is measured by weighing the time needed to perform 

them against the time saved by fewer subdivisions. The techniques used 

here apply to any integer-programming problem involving only binary 

variables, so that implicit enumeration is an alternative branch-and-bound 

procedure for this class of problems. In this case, subdivisions are fathomed 

if any of three conditions hold: ? 2x3 ? x4 + x5 ? ? 4. 300 Integer 

Programming 9. 7 Figure 9. 20 i) the integer program is known to be 

infeasible over the subdivision, for example, by the above infeasibility test; 

ii) the 0–1 solution obtained by setting free variables to zero satis? s the 

linear inequalities; or iii) the objective value obtained by setting free 

variables to zero is no larger than the best feasible 0–1 solution previously 

generated. These conditions correspond to the three stated earlier for 

fathoming in the usual branch-and-bound procedure. If a region is not 

fathomed by one of these tests, implicit enumeration subdivides that region 

by selecting any free variable and ? xing its values to 0 or 1. Our arguments 

leading to the algorithm were based upon stating the original 0–1 problem in 

the following standard form: 1. the objective is a maximization with all coef? 

cients negative; and 2. onstraints are speci? ed as ‘‘ less than or equal to’’ 

inequalities. As usual, minimization problems are transformed to 

maximization by multiplying cost coef? cients by ? 1. If x j appears in the 

maximization form with a positive coef? cient, then the variable substitution 

x j = 1 ? x j everywhere in the model leaves the binary variable x j with a 

negative objective-function coef? cient. Finally, ‘‘ greater than or equal to’’ 
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constraints can be multiplied by ? 1 to become ‘‘ less than or equal to’’ 

constraints; and generalequalityconstraints are converted to inequalities by 

the special technique discussed in Exercise 17 of Chapter 2. 

Like the branch-and-bound procedure for general integer programs, the way 

we choose to subdivide regions can have a profound effect upon 

computations. In implicit enumeration, we begin with the zero solution x1 = 

x2 = · · · = xn = 0 and generate other solutions by setting variables to 1. 

One natural approach is to subdivide based upon the variable with highest 

objective contribution. For the sample problem, this would imply subdividing 

initially with x2 = 1 or x2 = 0. Another approach often used in practice is to 

try to drive toward feasibility as soon as possible. 

For instance, when x1 = 0, x2 = 1, and x3 = 0 are ? xed in the example 

problem, we could subdivide based upon either x4 or x5 . Setting x4 or x5 to 

1 and substituting for the ? xed variables, we ? nd that the constraints 

become: 9. 8 Cutting Planes 301 x4 = 1, x5 (free) = 0 : ? 3(0) ? 3(1) + (0) + 

2(1) + 3(0) ? ? 2, ? 5(0) ? 3(1) ? 2(0) ? 1(1) + (0) ? ? 4, x5 = 1, x4 (free) = 0 :

? 3(0) ? 3(1) + (0) + 2(0) + 3(1) ? ? 2, ? 5(0) ? 3(1) ? 2(0) ? 1(0) + (1) ? ? 4. 

For x4 = 1, the ? rst constraint is infeasible by 1 unit and the second 

constraint is feasible, giving 1 total unit of infeasibility. 

For x5 = 1, the ? rst constraint is infeasible by 2 units and the second by 2 

units, giving 4 total units of infeasibility. Thus x4 = 1 appears more 

favorable, and we would subdivide based upon that variable. In general, the 

variable giving the least total infeasibilities by this approach would be 

chosen next. Reviewing the example problem the reader will see that this 
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approach has been used in our solution. 9. 8 CUTTING PLANES The cutting-

plane algorithm solves integer programs by modifying linear-programming 

solutions until the integer solution is obtained. 

It does not partition the feasible region into subdivisions, as in branch-and-

bound approaches, but instead works with a single linear program, which it 

re? nes by adding new constraints. The new constraints successively reduce 

the feasible region until an integer optimal solution is found. In practice, the 

branch-and-bound procedures almost always outperform the cutting-plane 

algorithm. Nevertheless, the algorithm has been important to the evolution 

of integer programming. Historically, it was the ? rst algorithm developed for 

integer programming that could be proved to converge in a ? nite number of 

steps. 

In addition, even though the algorithm generally is considered to be very 

inef? cient, it has provided insights into integer programming that have led 

to other, more ef? cient, algorithms. Again, we shall discuss the method by 

considering the sample problem of the previous sections: z ? = max 5x1 + 

8x2 , subject to: x1 + x2 + s1 = 6, 5x1 + 9x2 + s2 = 45, x1 , x2 , s1 , s2 ? 0.

s1 and s2 are, respectively, slack variables for the ? rst and second 

constraints. Solving the problem by the simplex method produces the 

following optimal tableau: (? z) x1 3 1 5 ? 4 s1 ? 4 s2 = ? 41 4 , 1 5 x2 ? s1 + 

4 s2 = 9 1 + 4 s1 ? 4 s2 = 9 4, 15 4, (11) x1 , x2 , s1 , s2 , s3 ? 0. Let us 

rewrite these equations in an equivalent but somewhat altered form: (? z) x1

? 2s1 ? s2 +42 = x2 ? 2s1 3 4 1 4 3 4 3 1 ? 4 s1 ? 4 s2 , 1 3 ? 4 s1 ? 4 s2 , 3 1

? 4 s1 ? 4 s2 , +2s1 ? s2 ? 2 = ? 3= x1 , x2 , s1 , s2 ? 0. These algebraic 

manipulations have isolated integer coef? cients to one side of the equalities 
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and fractions to the other, in such a way that the constant terms on the 

righthand side are all nonnegative and the slack variable coef? cients on the 

righthand side are all nonpositive. 302 Integer Programming 9. 8 

In any integer solution, the lefthand side of each equation in the last tableau 

must be integer. Since s1 and s2 are nonnegative and appear to the right 

with negative coef? cients, each righthand side necessarily must be less than

or equal to the fractional constant term. Taken together, these two 

observations show that both sides of every equation must be an integer less 

than or equal to zero (if an integer is less than or equal to a fraction, it 

necessarily must be 0 or negative). Thus, from the ? rst equation, we may 

write: 3 4 3 1 ? 4 s1 ? 4 s2 ? 0 and integer, or, introducing a slack variable s3

, 3 4 3 1 ? 4 s1 ? 4 s2 + s3 = 0, 3 ? 0 s4 ? 0 s5 ? 0 and integer. (C1 ) 

Similarly, other conditions can be generated from the remaining constraints: 

1 4 3 4 1 3 ? 4 s1 ? 4 s2 + s4 = 0 
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