
Integer programming

Technology

https://assignbuster.com/essay-subjects/technology/
https://assignbuster.com/integer-programming/
https://assignbuster.com/

 Integer programming – Paper Example Page 2

Integer Programming 9 The linear-programming models that have been

discussed thus far all have been continuous, in the sense that decision

variables are allowed to be fractional. Often this is a realistic assumption. For

instance, we might 3 easily produce 102 4 gallons of a divisible good such as

wine. It also might be reasonable to accept a solution 1 giving an hourly

production of automobiles at 58 2 if the model were based upon average

hourly production, and the production had the interpretation of production

rates. At other times, however, fractional solutions are not realistic, and we

must consider the optimization problem: n

Maximize j= 1 cjxj, subject to: n j= 1 ai j x j = bi xj ? 0 x j integer (i = 1,

2, . . . , m), (j = 1, 2, . . . , n), (for some or all j = 1, 2, . . . , n). This problem

is called the (linear) integer-programming problem. It is said to be a mixed

integer program when some, but not all, variables are restricted to be

integer, and is called a pure integer program when all decision variables

must be integers. As we saw in the preceding chapter, if the constraints are

of a network nature, then an integer solution can be obtained by ignoring the

integrality restrictions and solving the resulting linear program.

In general, though, variables will be fractional in the linear-programming

solution, and further measures must be taken to determine the integer-

programming solution. The purpose of this chapter is twofold. First, we will

discuss integer-programming formulations. This should provide insight into

the scope of integer-programming applications and give some indication of

why many practitioners feel that the integer-programming model is one of

the most important models in managementscience. Second, we consider

basic approaches that have been developed for solving integer and mixed-

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 3

integer programming problems. . 1 SOME INTEGER-PROGRAMMING MODELS

Integer-programming models arise in practically every area of application of

mathematical programming. To develop a preliminary appreciation for the

importance of these models, we introduce, in this section, three areas where

integer programming has played an important role in supporting managerial

decisions. We do not provide the most intricate available formulations in

each case, but rather give basic models and suggest possible extensions.

272 9. 1 Some Integer-Programming Models 273

Capital Budgeting In a typical capital-budgeting problem, decisions involve

the selection of a number of potential investments. The investment decisions

might be to choose among possible plant locations, to select a con? guration

of capital equipment, or to settle upon a set of research-and-development

projects. Often it makes no sense to consider partial investments in these

activities, and so the problem becomes a go–no-go integer program, where

the decision variables are taken to be x j = 0 or 1, indicating that the jth

investment is rejected or accepted.

Assuming that c j is the contribution resulting from the jth investment and

that ai j is the amount of resource i, such as cash or manpower, used on the

jth investment, we can state the problem formally as: n Maximize j= 1 cjxj,

subject to: n j= 1 ai j x j ? bi xj = 0 or (i = 1, 2, . . . , m), 1 (j = 1, 2, . . . , n).

The objective is to maximize total contribution from all investments without

exceeding the limited availability bi of any resource. One important special

scenario for the capital-budgeting problem involves cash-? ow constraints.

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 4

In this case, the constraints n j= 1 ai j xi ? bi re? ect incremental cash

balance in each period. The coef? cients ai j represent the net cash ? ow from

investment j in period i. If the investment requires additional cash in period i,

then ai j > 0, while if the investment generates cash in period i, then ai j < 0.

The righthand-side coef? cients bi represent the incremental exogenous cash

? ows. If additional funds are made available in period i, then bi > 0, while if

funds are withdrawn in period i, then bi < 0.

These constraints state that the funds required for investment must be less

than or equal to the funds generated from prior investments plus exogenous

funds made available (or minus exogenous funds withdrawn). The capital-

budgeting model can be made much richer by including logical

considerations. Suppose, for example, that investment in a new product line

is contingent upon previous investment in a new plant. This contingency is

modeled simply by the constraint x j ? xi , which states that if xi = 1 and

project i (new product development) is accepted, then necessarily x j = 1

and project j (construction of a new plant) must be accepted.

Another example of this nature concerns con? icting projects. The constraint

x1 + x2 + x3 + x4 ? 1, for example, states that only one of the ? rst four

investments can be accepted. Constraints like this commonly are called

multiple-choice constraints. By combining these logical constraints, the

model can incorporate many complex interactions between projects, in

addition to issues of resource allocation. The simplest of all capital-budgeting

models has just one resource constraint, but has attracted much attention in

the management-science literature. It is stated as: n Maximize j= 1 jxj, 274

Integer Programming 9. 1 subject to: n j= 1 a j x j ? b, xj = 0 or 1 (j = 1, 2, . .
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 5

. , n). Usually, this problem is called the 0–1 knapsack problem, since it is

analogous to a situation in which a hiker must decide which goods to include

on his trip. Here c j is the ‘‘ value’’ or utility of including good j, which weighs

a j > 0 pounds; the objective is to maximize the ‘‘ pleasure of the trip,’’

subject to the weight limitation that the hiker can carry no more than b

pounds. The model is altered somewhat by allowing more than one unit of

any good to be taken, by writing x j ? and x j -integer in place of the 0–1

restrictions on the variables. The knapsack model is important because a

number of integer programs can be shown to be equivalent to it, and further,

because solution procedures for knapsack models have motivated

procedures for solving general integer programs. Warehouse Location In

modeling distribution systems, decisions must be made about tradeoffs

between transportation costs and costs for operating distribution centers. As

an example, suppose that a manager must decide which of n warehouses to

use for meeting the demands of m customers for a good.

The decisions to be made are which warehouses to operate and how much to

ship from any warehouse to any customer. Let yi = xi j 1 if warehouse i is

opened, 0 if warehouse i is not opened; = Amount to be sent from

warehouse i to customer j. The relevant costs are: f i = Fixed operating cost

for warehouse i, ifopened (for example, a cost to lease the warehouse), ci j =

Per-unit operating cost at warehouse i plus the transportation cost for

shipping from warehouse i to customer j. There are two types of constraints

for the model: i) the demand d j of each customer must be ? led from the

warehouses; and ii) goods can be shipped from a warehouse only if it is

opened. The model is: m n m Minimize i= 1 j= 1 ci j xi j + f i yi , i= 1 (1)

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 6

subject to: m xi j i= 1 n j= 1 = dj ? n j= 1 (j = 1, 2, . . . , n), (i = 1, 2, . . . ,

m), (i = 1, 2, . . . , m; j = 1, 2, . . . , n), (i = 1, 2, . . . , m). (2) xi j ? yi ? xi j ? 0

yi = 0 dj? ? 0 or 1 ? (3) 9. 1 Some Integer-Programming Models 275 The

objective function incorporates transportation and variable warehousing

costs, in addition to ? xed costs for operating warehouses.

The constraints (2) indicate that each customer’s demand must be met. The

summation over the shipment variables xi j in the ith constraint of (3) is the

amount of the good shipped from warehouse i. When the warehouse is not

opened, yi = 0 and the constraint speci? es that nothing can be shipped from

the warehouse. On the other hand, when the warehouse is opened and yi =

1, the constraint simply states that the amount to be shipped from

warehouse i can be no larger than the total demand, which is always true.

Consequently, constraints (3) imply restriction (ii) as proposed above.

Although oversimpli? ed, this model forms the core for sophisticated and

realistic distribution models incorporating such features as: 1. multi-echelon

distribution systems from plant to warehouse to customer; 2. capacity

constraints on both plant production and warehouse throughput; 3.

economies of scale in transportation and operating costs; 4. service

considerations such as maximum distribution time from warehouses to

customers; 5. multiple products; or 6. conditions preventing splitting of

orders (in the model above, the demand for any customer can be supplied

from several warehouses).

These features can be included in the model by changing it in several ways.

For example, warehouse capacities are incorporated by replacing the term

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 7

involving yi in constraint (3) with yi K i , where K i is the throughput capacity

of warehouse i; multi-echelon distribution may require triple-subscripted

variables xi jk denoting the amount to be shipped, from plant i to customer k

through warehouse j. Further examples of how the simple warehousing

model described here can be modi? ed to incorporate the remaining features

mentioned in this list are given in the exercises at the end of the chapter.

Scheduling The entire class of problems referred to as sequencing,

scheduling, and routing are inherently integer programs. Consider, for

example, the scheduling of students, faculty, and classrooms in such a way

that the number of students who cannot take their ? rst choice of classes is

minimized. There are constraints on the number and size of classrooms

available at any one time, the availability of faculty members at particular

times, and the preferences of the students for particular schedules. Clearly,

then, the ith student is scheduled for the jth class during the nth time period

or not; hence, such a variable is either zero or one.

Other examples of this class of problems include line-balancing, critical-path

scheduling with resource constraints, and vehicle dispatching. As a speci? c

example, consider the scheduling of airline ? ight personnel. The airline has a

number of routing ‘‘ legs’’ to be ? own, such as 10 A. M. New York to

Chicago, or 6 P. M. Chicago to Los Angeles. The airline must schedule its

personnel crews on routes to cover these ? ights. One crew, for example,

might be scheduled to ? y a route containing the two legs just mentioned.

The decision variables, then, specify the scheduling of the crews to routes: 1

if a crew is assigned to route j, xj = 0 otherwise. Let 1 if leg i is included on

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 8

route j, ai j = 0 otherwise, and The coef? cients ai j de? ne the acceptable

combinations of legs and routes, taking into account such characteristics as

sequencing of legs for making connections between ? ights and for including

in the routes ground time for maintenance. The model becomes: n c j = Cost

for assigning a crew to route j. Minimize j= 1 cjxj, 276 Integer Programming

9. 1 subject to: n j= 1 ai j x j = 1 xj = 0 or 1 (i = 1, 2, . . , m), (j = 1, 2, . . . ,

n). (4) The ith constraint requires that one crew must be assigned on a route

to ? y leg i. An alternative formulation permits a crew to ride as passengers

on a leg. Then the constraints (4) become: n j= 1 ai j x j ? 1 n j= 1 (i = 1,

2, . . . , m). (5) If, for example, a1 j x j = 3, then two crews ? y as passengers

on leg 1, possibly to make connections to other legs to which they have been

assigned for duty. These airline-crew scheduling models arise in many other

settings, such as vehicle delivery problems, political districting, and

computer data processing.

Often model (4) is called a set-partitioning problem, since the set of legs will

be divided, or partitioned, among the various crews. With constraints (5), it is

called a set-covering problem, since the crews then will cover the set of legs.

Another scheduling example is the so-called traveling salesman problem.

Starting from his home, a salesman wishes to visit each of (n ? 1) other cities

and return home at minimal cost. He must visit each city exactly once and it

costs ci j to travel from city i to city j. What route should he select? If we let

xi j = n n 1 0 if he goes from city i to city j, otherwise, e may be tempted to

formulate his problem as the assignment problem: Minimize i= 1 j= 1 ci j xi

j , subject to: n i= 1 n j= 1 xi j = 1 xi j = 1 xi j ? 0 (j = 1, 2, . . . , n), (i = 1,

2, . . . , n), (i = 1, 2, . . . , n; j = 1, 2, . . . , n). The constraints require that the

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 9

salesman must enter and leave each city exactly once. Unfortunately, the

assignment model can lead to infeasible solutions. It is possible in a six-city

problem, for example, for the assignment solution to route the salesman

through two disjoint subtours of the cities instead of on a single trip or tour.

See Fig. 9. 1.) Consequently, additional constraints must be included in

order to eliminate subtour solutions. There are a number of ways to

accomplish this. In this example, we can avoid the subtour solution of Fig. 9.

1 by including the constraint: x14 + x15 + x16 + x24 + x25 + x26 + x34 +

x35 + x36 ? 1. 9. 2 Formulating Integer Programs 277 Figure 9. 1 Disjoint

subtours. This inequality ensures that at least one leg of the tour connects

cities 1, 2, and 3 with cities 4, 5, and 6.

In general, if a constraint of this form is included for each way in which the

cities can be divided into two groups, then subtours will be eliminated. The

problem with this and related approaches is that, with n cities, (2n ? 1)

constraints of this nature must be added, so that the formulation becomes a

very large integer-programming problem. For this reason the traveling

salesman problem generally is regarded as dif? cult when there are many

cities. The traveling salesman model is used as a central component of many

vehicular routing and scheduling models. It also arises in production

scheduling.

For example, suppose that we wish to sequence (n ? 1) jobs on a single

machine, and that ci j is the cost for setting up the machine for job j, given

that job i has just been completed. What scheduling sequence for the jobs

gives the lowest total setup costs? The problem can be interpreted as a

traveling salesman problem, in which the ‘‘ salesman’’ corresponds to the
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 10

machine which must ‘‘ visit’’ or perform each of the jobs. ‘‘ Home’’ is the

initial setup of the machine, and, in some applications, the machine will have

to be returned to this initial setup after completing all of the jobs.

That is, the ‘‘ salesman’’ must return to ‘‘ home’’ after visiting the ‘‘ cities. ’’

9. 2 FORMULATING INTEGER PROGRAMS The illustrations in the previous

section not only have indicated speci? c integer-programming applications,

but also have suggested how integer variables can be used to provide broad

modeling capabilities beyond those available in linear programming. In many

applications, integrality restrictions re? ect natural indivisibilities of the

problem under study. For example, when deciding how many nuclear aircraft

carriers to have in the U. S.

Navy, fractional solutions clearly are meaningless, since the optimal number

is on the order of one or two. In these situations, the decision variables are

inherently integral by the nature of the decision-making problem. This is not

necessarily the case in every integer-programming application, as illustrated

by the capitalbudgeting and the warehouse-location models from the last

section. In these models, integer variables arise from (i) logical conditions,

such as if a new product is developed, then a new plant must be

constructed, and from (ii) non-linearities such as ? ed costs for opening a

warehouse. Considerations of this nature are so important for modeling that

we devote this section to analyzing and consolidating speci? c

integerprogramming formulation techniques, which can be used as tools for

a broad range of applications. Binary (0–1) Variables Suppose that we are to

determine whether or not to engage in the following activities: (i) to build a

new plant, (ii) to undertake an advertising campaign, or (iii) to develop a new
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 11

product. In each case, we must make a yes–no or so-called go–no–go

decision.

These choices are modeled easily by letting x j = 1 if we engage in the jth

activity and x j = 0 otherwise. Variables that are restricted to 0 or 1 in this

way are termed binary, bivalent, logical, or 0–1 variables. Binary variables

are of great importance because they occur regularly in many model

formulations, particularly in problems addressing long-range and high-cost

strategic decisions associated with capital-investment planning. If, further,

management had decided that at most one of the above three activities can

be pursued, the 78 Integer Programming 9. 2 following constraint is

appropriate: 3 j= 1 x j ? 1. As we have indicated in the capital-budgeting

example in the previous section, this restriction usually is referred to as a

multiple-choice constraint, since it limits our choice of investments to be at

most one of the three available alternatives. Binary variables are useful

whenever variables can assume one of two values, as in batch processing.

For example, suppose that a drug manufacturer must decide whether or not

to use a fermentation tank.

If he uses the tank, the processingtechnologyrequires that he make B units.

Thus, his production y must be 0 or B, and the problem can be modeled with

the binary variable x j = 0 or 1 by substituting Bx j for y everywhere in the

model. Logical Constraints Frequently, problem settings impose logical

constraints on the decision variables (like timing restrictions, contingencies,

or con? icting alternatives), which lend themselves to integer-programming

formulations. The following discussion reviews the most important instances

of these logical relationships. Constraint Feasibility
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 12

Possibly the simplest logical question that can be asked in mathematical

programming is whether a given choice of the decision variables satis? es a

constraint. More precisely, when is the general constraint f (x1 , x2 , . . . ,

xn) ? b (6) satis? ed? We introduce a binary variable y with the

interpretation: y= and write 0 1 if the constraint is known to be satis? ed,

otherwise, f (x1 , x2 , . . . , xn) ? By ? b, (7) where the constant B is chosen

to be large enough so that the constraint always is satis? ed if y = 1; that is,

for every possible choice of the decision variables x1 , x2 , . . . xn at our

disposal. Whenever y = 0 gives a feasible solution to constraint (7), we know

that constraint (6) must be satis? ed. In practice, it is usually very easy to

determine a large number to serve as B, although generally it is best to use

the smallest possible value of B in order to avoid numerical dif? culties

during computations. Alternative Constraints f (x1 , x2 , . . . , xn) ? b + B,

Consider a situation with the alternative constraints: f 1 (x1 , x2 , . . . , xn) ?

b1 , f 2 (x1 , x2 , . . . , xn) ? b2 . At least one, but not necessarily both, of

these constraints must be satis? d. This restriction can be modeled by

combining the technique just introduced with a multiple-choice constraint as

follows: f 1 (x1 , x2 , . . . , xn) ? B1 y1 ? b1 , f 2 (x1 , x2 , . . . , xn) ? B2 y2 ?

b2 , y1 + y2 ? 1, y1 , y2 binary. 9. 2 Formulating Integer Programs 279 The

variables y1 and y2 and constants B1 and B2 are chosen as above to

indicate when the constraints are satis? ed. The multiple-choice constraint y1

+ y2 ? 1 implies that at least one variable y j equals 0, so that, as required,

at least one constraint must be satis? ed.

We can save one integer variable in this formulation by noting that the

multiple-choice constraint can be replaced by y1 + y2 = 1, or y2 = 1 ? y1 ,

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 13

since this constraint also implies that either y1 or y2 equals 0. The resulting

formulation is given by: f 1 (x1 , x2 , . . . , xn) ? B1 y1 ? b1 , f 2 (x1 ,

x2 , . . . , xn) ? B2 (1 ? y1) ? b2 , y1 = 0 or 1. As an illustration of this

technique, consider again the custom-molder example from Chapter 1. That

example included the constraint 6x1 + 5x2 ? 60, (8) which represented the

production capacity for producing x1 hundred cases of six-ounce glasses and

x2 hundred cases of ten-ounce glasses.

Suppose that there were an alternative production process that could be

used, having the capacity constraint 4x1 + 5x2 ? 50. (9) Then the decision

variables x1 and x2 must satisfy either (8) or (9), depending upon which

production process is selected. The integer-programming formulation

replaces (8) and (9) with the constraints: 6x1 + 5x2 ? 100y ? 60, 4x1 + 5x2 ?

100(1 ? y) ? 50, y= 0 or 1. In this case, both B1 and B2 are set to 100, which

is large enough so that the constraint is not limiting for the production

process not used. Conditional Constraints These constraints have the form: f

1 (x1 , x2 , . . . xn) > b1 implies that f 2 (x1 , x2 , . . . , xn) ? b2 . Since this

implication is not satis? ed only when both f 1 (x1 , x2 , . . . , xn) > b1 and f

2 (x1 , x2 , . . . , xn) > b2 , the conditional constraint is logically equivalent

to the alternative constraints f 1 (x1 , x2 , . . . , xn) ? b1 and/or f 2 (x1 , x2 , .

. . , xn) ? b2 , where at least one must be satis? ed. Hence, this situation can

be modeled by alternative constraints as indicated above. k-Fold Alternatives

Suppose that we must satisfy at least k of the constraints: f j (x1 , x2 , . . . ,

xn) ? b j (j = 1, 2, . . . , p).

For example, these restrictions may correspond to manpower constraints for

p potential inspection systems for quality control in a production process. If
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 14

management has decided to adopt at least k inspection systems, then the k

constraints specifying the manpower restrictions for these systems must be

satis? ed, and the 280 Integer Programming 9. 2 remaining constraints can

be ignored. Assuming that B j for j = 1, 2, . . . , p, are chosen so that the

ignored constraints will not be binding, the general problem can be

formulated as follows: f j (x1 , x2 , . . . , xn) ? B j (1 ? y j) ? b j p j= 1 (j = 1,

2, . . , p), y j ? k, yj = 0 or 1 (j = 1, 2, . . . , p). That is, y j = 1 if the jth

constraint is to be satis? ed, and at least k of the constraints must be satis?

ed. If we de? ne y j ? 1 ? y j , and substitute for y j in these constraints, the

form of the resulting constraints is analogous to that given previously for

modeling alternative constraints. Compound Alternatives The feasible region

shown in Fig. 9. 2 consists of three disjoint regions, each speci? ed by a

system of inequalities. The feasible region is de? ned by alternative sets of

constraints, and can be modeled by the system: f 1 (x1 , x2) ?

B1 y1 ? b1 f 2 (x1 , x2) ? B2 y1 ? b2 Region 1 constraints Region 2

constraints Region 3 constraints ? f 5 (x1 , x2) ? B5 y3 ? b5 ? f 6 (x1 , x2) ?

B6 y3 ? b6 ? f 7 (x1 , x2) ? B7 y3 ? b7 y1 + y2 + y3 ? 2, x1 ? 0, x2 ? 0, y1 ,

y2 , y3 binary. f 3 (x1 , x2) ? B3 y2 ? b3 f 4 (x1 , x2) ? B4 y2 ? b4 Note that

we use the same binary variable y j for eachconstraint de? ning one of the

regions, and that the Figure 9. 2 An example of compound alternatives. 9. 2

Formulating Integer Programs 281 Figure 9. 3 Geometry of alternative

constraints. constraint y1 + y2 + y3 ? implies that the decision variables x1

and x2 lie in at least one of the required regions. Thus, for example, if y3 =

0, then each of the constraints f 5 (x1 , x2) ? b5 , f 6 (x1 , x2) ? b6 , and f 7

(x1 , x2) ? b7 is satis? ed. The regions do not have to be disjoint before we

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 15

can apply this technique. Even the simple alternative constraint f 1 (x1 ,

x2) ? b1 or f 2 (x1 , x2) ? b2 shown in Fig. 9. 3 contains overlapping regions.

Representing Nonlinear Functions Nonlinear functions can be represented by

integer-programming formulations. Let us analyze the most useful

representations of this type.) Fixed Costs Frequently, the objective function

for a minimization problem contains ? xed costs (preliminary design costs, ?

xed investment costs, ? xed contracts, and so forth). For example, the cost of

producing x units of a speci? c product might consist of a ? xed cost of

setting up the equipment and a variable cost per unit produced on the

equipment. An example of this type of cost is given in Fig. 9. 4. Assume that

the equipment has a capacity of B units. De? ne y to be a binary variable

that indicates when the ? xed cost is incurred, so that y = 1 when x > 0 and

y = 0 when x = 0.

Then the contribution to cost due to x may be written as K y + cx, with the

constraints: x ? By, x ? 0, y = 0 or 1. As required, these constraints imply

that x = 0 when the ? xed cost is not incurred, i. e. , when y = 0. The

constraints themselves do not imply that y = 0 if x = 0. But when x = 0, the

minimization will clearly 282 Integer Programming 9. 2 Figure 9. 4 A ? xed

cost. Figure 9. 5 Modeling a piecewise linear curve. select y = 0, so that the ?

xed cost is not incurred. Finally, observe that if y = 1, then the added

constraint becomes x ? B, which re? ects the capacity limit on the production

equipment. i) Piecewise Linear Representation Another type of nonlinear

function that can be represented by integer variables is a piecewise linear

curve. Figure 9. 5 illustrates a cost curve for plant expansion that contains

three linear segments with variable costs of 5, 1, and 3 million dollars per

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 16

1000 items of expansion. To model the cost curve, we express any value of x

as the sum of three variables ? 1 , ? 2 , ? 3 , so that the cost for each of these

variables is linear. Hence, x = ? 1 + ? 2 + ? 3 , where 0 ? ? 1 ? 4, 0 ? ? 3 ? 5;

and the total variable cost is given by: Cost = 5? 1 + ? 2 + 3? 3 . 0 ? ? 2 ? 6,

10) 9. 2 Formulating Integer Programs 283 Note that we have de? ned the

variables so that: ? 1 corresponds to the amount by which x exceeds 0, but is

less than or equal to 4; ? 2 is the amount by which x exceeds 4, but is less

than or equal to 10; and ? 3 is the amount by which x exceeds 10, but is less

than or equal to 15. If this interpretation is to be valid, we must also require

that ? 1 = 4 whenever ? 2 > 0 and that ? 2 = 6 whenever ? 3 > 0. Otherwise,

when x = 2, say, the cost would be minimized by selecting ? 1 = ? 3 = 0

and ? 2 = 2, since the variable ? 2 has the smallest variable cost.

However, these restrictions on the variables are simply conditional

constraints and can be modeled by introducing binary variables, as before. If

we let w1 = w2 = 1 0 1 0 if ? 1 is at its upper bound, otherwise, if ? 2 is at its

upper bound, otherwise, then constraints (10) can be replaced by 4w1 ? ? 1 ?

4, 6w2 ? ? 2 ? 6w1 , 0 ? ? 3 ? 5w2 , w1 and w2 binary, (11) to ensure that the

proper conditional constraints hold. Note that if w1 = 0, then w2 = 0, to

maintain feasibility for the constraint imposed upon ? 2 , and (11) reduces to

0 ? ? 1 ? 4, If w1 = 1 and w2 = 0, then (11) reduces to ? 1 = 4, 0 ? ? 2 ? 6,

and ? = 0. ? 2 = 0, and ? 3 = 0. Finally, if w1 = 1 and w2 = 1, then (11)

reduces to ? 1 = 4, ? 2 = 6, and 0 ? ? 3 ? 5. Hence, we observe that there are

three feasible combinations for the values of w1 and w2 : w1 = 0, w1 = 1,

and w1 = 1, w2 = 1 corresponding to 10 ? x ? 15 since ? 1 = 4 and ? 2 = 6.

The same general technique can be applied to piecewise linear curves with

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 17

any number of segments. The general constraint imposed upon the

variable ? j for the jth segment will read: L j w j ? ? j ? L j w j? 1 , where L j is

the length of the segment. w2 = 0 corresponding to 0 ? x ? 4 w2 = 0

corresponding to 4 ? x ? 0 since ? 2 = ? 3 = 0; since ? 1 = 4 and ? 3 = 0; 284

Integer Programming 9. 3 Figure 9. 6 Diseconomies of scale. iii)

Diseconomies of Scale An important special case for representing nonlinear

functions arises when only diseconomies of scale apply— that is, when

marginal costs are increasing for a minimization problem or marginal returns

are decreasing for a maximization problem. Suppose that the expansion cost

in the previous example now is speci? ed by Fig. 9. 6. In this case, the cost is

represented by Cost = ? 1 + 3? 2 + 6? 3 , subject only to the linear

constraints without integer variables, 0 ? 1 ? 4 0 ? ? 2 ? 6, 0 ? ? 3 ? 5. The

conditional constraints involving binary variables in the previous formulation

can be ignored if the cost curve appears in a minimization objective function,

since the coef? cients of ? 1 , ? 2 , and ? 3 imply that it is always best to set ?

1 = 4 before taking ? 2 > 0, and to set ? 2 = 6 before taking ? 3 > 0. As a

consequence, the integer variables have been avoided completely. This

representation without integer variables is not valid, however, if economies

of scale are present; for example, if the function given in Fig. . 6 appears in a

maximization problem. In such cases, it would be best to select the third

segment with variable ? 3 before taking the ? rst two segments, since the

returns are higher on this segment. In this instance, the model requires the

binary-variable formulation of the previous section. iv) Approximation of

Nonlinear Functions One of the most useful applications of the piecewise

linear representation is for approximating nonlinear functions. Suppose, for

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 18

example, that the expansion cost in our illustration is given by the heavy

curve in Fig. 9. 7.

If we draw linear segments joining selected points on the curve, we obtain a

piecewise linear approximation, which can be used instead of the curve in

the model. The piecewise approximation, of course, is represented by

introducing integer variables as indicated above. By using more points on

the curve, we can make the approximation as close as we desire. 9. 3 A

Sample Formulation † 285 Figure 9. 7 Approximation of a nonlinear curve. 9.

3 A SAMPLE FORMULATION † Proper placement of service facilities such as

schools, hospitals, and recreational areas is essential to ef? cient urban

design. Here we will present a simpli? d model for ? rehouse location. Our

purpose is to show formulation devices of the previous section arising

together in a meaningful context, rather than to give a comprehensive model

for the location problem per se. As a consequence, we shall ignore many

relevant issues, including uncertainty. Assume that population is

concentrated in I districts within the city and that district i contains pi people.

Preliminary analysis (land surveys, politics, and so forth) has limited the

potential location of ? rehouses to J sites. Let di j ? 0 be the distance from the

center of district i to site j.

We are to determine the ‘‘ best’’ site selection and assignment of districts

to ? rehouses. Let yj = and xi j = 1 0 if district i is assigned to site j,

otherwise. 1 0 if site j is selected, otherwise; The basic constraints are that

every district should be assigned to exactly one ? rehouse, that is, J j= 1 xi j

= 1 (i = 1, 2, . . . , I), and that no district should be assigned to an unused

site, that is, y j = 0 implies xi j = 0 (i = 1, 2, . . . , I). The latter restriction can
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 19

be modeled as alternative constraints, or more simply as: I i= 1 xi j ? y j I (j

= 1, 2, . . . , J).

Since xi j are binary variables, their sum never exceeds I , so that if y j = 1,

then constraint j is nonbinding. If y j = 0, then xi j = 0 for all i. † This section

may be omitted without loss of continuity. 286 Integer Programming 9. 3

Next note that di , the distance from district i to its assigned ? rehouse, is

given by: J di = since one xi j will be 1 and all others 0. Also, the total

population serviced by site j is: di j xi j , j= 1 I sj = pi xi j . i= 1 Assume that a

central district is particularly susceptible to ? re and that either sites 1 and 2

or sites 3 and 4 can be used to protect this district.

Then one of a number of similar restrictions might be: y1 + y2 ? 2 or y3 + y4

? 2. We let y be a binary variable; then these alternative constraints become:

y1 + y2 ? 2y, y3 + y4 ? 2(1 ? y). Next assume that it costs f j (s j) to build a ?

rehouse at site j to service s j people and that a total budget of B dollars has

been allocated for ? rehouse construction. Then J j= 1 f j (s j) ? B. Finally,

one possible social-welfare function might be to minimize the distance

traveled to the district farthest from its assigned ? rehouse, that is, to:

Minimize D, where or, equivalently,‡ to subject to: D ? i (i = 1, 2, . . . , I). J D

= max di ; Minimize D, Collecting constraints and substituting above for di in

terms of its de? ning relationship di = we set up the full model as: Minimize

D, ‡ The inequalities D ? d imply that D ? max d . The minimization of D then

ensures that it will actually be the i i maximum of the di . di j xi j , j= 1 9. 4

Some Characteristics Of Integer Programs—A Sample Problem 287 subject

to: J D? j= 1 J j= 1 I i= 1 I di j xi j ? 0 xi j = 1 xi j ? y j I pi xi j = 0 f j (s j) ? B, (i

= 1, 2, . . . , I), (i = 1, 2, . . . , I), (j = 1, 2, . . . , J), (j = 1, 2, . . . , J),
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 20

Sj? i= 1 J j= 1 y1 + y2 ? 2y ? 0, y3 + y4 + 2y ? 2, xi j , y j , y binary (i = 1, 2, .

. . , I ; j = 1, 2, . . . , J). At this point we might replace each function f j (s j)

by an integer-programming approximation to complete the model. Details

are left to the reader. Note that if f j (s j) contains a ? xed cost, then new ?

xed-cost variables need not be introduced—the variable y j serves this

purpose. The last comment, and the way in which the conditional constraint

‘‘ y j = 0 implies xi j = 0 (i = 1, 2, . . . , I)’’ has been modeled above, indicate

that the formulation techniques of Section 9. should not be applied without

thought. Rather, they provide a common framework for modeling and should

be used in conjunction with good modeling ‘‘ common sense. ’’ In general, it

is best to introduce as few integer variables as possible. 9. 4 SOME

CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM Whereas

the simplex method is effective for solving linear programs, there is no single

technique for solving integer programs. Instead, a number of procedures

have been developed, and the performance of any particular technique

appears to be highly problem-dependent.

Methods to date can be classi? ed broadly as following one of three

approaches: i) enumeration techniques, including the branch-and-bound

procedure; ii) cutting-plane techniques; and iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which

combine techniques using several of these approaches. In fact, there is a

trend in computer systems for integer programming to include a number of

approaches and possibly utilize them all when analyzing a given problem. In

the sections to follow, we shall consider the ? rst two approaches in some

detail.

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 21

At this point, we shall introduce a speci? c problem and indicate some

features of integer programs. Later we will use this example to illustrate and

motivate the solution procedures. Many characteristics of this example are

shared by the integer version of the custommolder problem presented in

Chapter 1. The problem is to determine z ? where: z ? = max z = 5x1 + 8x2 ,

288 Integer Programming 9. 5 subject to: x1 + x2 ? 6, 5x1 + 9x2 ? 45, x1 ,

x2 ? 0 and integer. The feasible region is sketched in Fig. 9. 8. Dots in the

shaded region are feasible integer points. Figure 9. An integer programming

example. If the integrality restrictions on variables are dropped, the resulting

problem is a linear program. We will call it the associated linear program. We

may easily determine its optimal solution graphically. Table 9. 1 depicts

some of the features of the problem. Table 9. 1 Problem features. Continuous

optimum x1 x2 z 9 4 = 2. 25 15 = 3. 75 4 Round off 2 4 Infeasible Nearest

feasible point 2 3 34 Integer optimum 0 5 40 41. 25 Observe that the optimal

integer-programming solution is not obtained by rounding the linear-

programming solution.

The closest point to the optimal linear-program solution is not even feasible.

Also, note that the nearest feasible integer point to the linear-program

solution is far removed from the optimal integer point. Thus, it is not suf?

cient simply to round linear-programming solutions. In fact, by scaling the

righthand-side and cost coef? cients of this example properly, we can

construct a problem for which the optimal integerprogramming solution lies

as far as we like from the rounded linear-programming solution, in either z

value or distance on the plane.

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 22

In an example as simple as this, almost any solution procedure will be

effective. For instance, we could easily enumerate all the integer points with

x1 ? 9, x2 ? 6, and select the best feasible point. In practice, the number of

points to be considered is likely to prohibit such an exhaustive enumeration

of potentially feasible points, and a more sophisticated procedure will have

to be adopted. 9. 5 Branch-And-Bound 289 Figure 9. 9 Subdividing the

feasible region. 9. 5 BRANCH-AND-BOUND Branch-and-bound is essentially a

strategy of ‘‘ divide and conquer. ’ The idea is to partition the feasible region

into more manageable subdivisions and then, if required, to further partition

the subdivisions. In general, there are a number of ways to divide the

feasible region, and as a consequence there are a number of branch-and-

bound algorithms. We shall consider one such technique, for problems with

only binary variables, in Section 9. 7. For historical reasons, the technique

that will be described next usually is referred to as the branch-and-bound

procedure. Basic Procedure An integer linear program is a linear program

further constrained by the integrality restrictions.

Thus, in a maximization problem, the value of the objective function, at the

linear-program optimum, will always be an upper bound on the optimal

integer-programming objective. In addition, any integer feasible point is

always a lower bound on the optimal linear-program objective value. The

idea of branch-and-bound is to utilize these observations to systematically

subdivide the linearprogramming feasible region and make assessments of

the integer-programming problem based upon these subdivisions. The

method can be described easily by considering the example from the

previous section.

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 23

At ? rst, the linear-programming region is not subdivided: The integrality

restrictions are dropped and the associated linear program is solved, giving

an optimal value z 0 . From our remark above, this gives the upper 1 bound

on z ? , z ? ? z 0 = 41 4 . Since the coef? cients in the objective function are

integral, z ? must be integral ? ? 41. and this implies that z 1 3 Next note that

the linear-programming solution has x1 = 2 4 and x2 = 3 4 . Both of these

variables must be integer in the optimal solution, and we can divide the

feasible region in an attempt to make either integral.

We know that, in any integer programming solution, x2 must be either an

integer ? 3 or an integer ? 4. Thus, our ? rst subdivision is into the regions

where x2 ? 3 and x2 ? 4 as displayed by the shaded regions L 1 and L 2 in

Fig. 9. 9. Observe that, by making the subdivisions, we have excluded the

old linear-program solution. (If we selected x1 instead, the region would be

subdivided with x1 ? 2 and x1 ? 3.) The results up to this point are pictured

conveniently in an enumeration tree (Fig. 9. 10). Here L 0 represents the

associated linear program, whose optimal solution has been included within

the L 0 box, and the upper bound on z ? ppears to the right of the box. The

boxes below correspond to the new subdivisions; the constraints that

subdivide L 0 are included next to the lines joining the boxes. Thus, the

constraints of L 1 are those of L 0 together with the constraint x2 ? 4, while

the constraints of L 2 are those of L 0 together with the constraint x2 ? 3.

The strategy to be pursued now may be apparent: Simply treat each

subdivision as we did the original problem. Consider L 1 ? rst. Graphically,

from Fig. 9. 9 we see that the optimal linear-programming solution 290

Integer Programming 9. 5 Figure 9. 10 Enumeration tree.

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 24

Figure 9. 11 Subdividing the region L 1 . 9 1 lies on the second constraint

with x2 = 4, giving x1 = 5 (45 ? 9(4)) = 5 and an objective value z = 5 9

+8(4) = 41. Since x1 is not integer, we subdivide L 1 further, into the regions

L 3 with x1 ? 2 and L 4 with 5 x1 ? 1. L 3 is an infeasible problem and so this

branch of the enumeration tree no longer needs to be considered. The

enumeration tree now becomes that shown in Fig. 9. 12. Note that the

constraints of any subdivision are obtained by tracing back to L 0 . For

example, L 4 contains the original constraints together with x2 ? 4 and x1 ? .

The asterisk (?) below box L 3 indicates that the region need not be

subdivided or, equivalently, that the tree will not be extended from this box.

At this point, subdivisions L 2 and L 4 must be considered. We may select

one arbitrarily; however, in practice, a number of useful heuristics are

applied to make this choice. For simplicity, let us select the subdivision most

recently generated, here L 4 . Analyzing the region, we ? nd that its optimal

solution has x1 = 1, 1 x2 = 9 (45 ? 5) = 40 9. Since x2 is not integer, L 4

must be further subdivided into L 5 with x2 ? 4, and L 6 with x2 ? , leaving L

2 , L 5 and L 6 yet to be considered. Treating L 5 ? rst (see Fig. 9. 13), we see

that its optimum has x1 = 1, x2 = 4, and z = 37. Since this is the best linear-

programming solution for L 5 and the linear program contains every integer

solution in L 5 , no integer point in that subdivision can give a larger

objective value than this point. Consequently, other points 9. 5 Branch-And-

Bound 291 Figure 9. 12 Figure 9. 13 Final subdivisions for the example. in L 5

need never be considered and L 5 need not be subdivided further. In fact,

since x1 = 1, x2 = 4, z = 37, is a feasible solution to the original problem, z ?

37 and we now have the bounds 37 ? z ? ? 41. Without further analysis, we

could terminate with the integer solution x1 = 1, x2 = 4, knowing that the
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 25

objective value of this point is within 10 percent of the true optimum. For

convenience, the lower bound z ? ? 37 just determined has been appended

to the right of the L 5 box in the enumeration tree (Fig. 9. 14). Although x1 =

1, x2 = 4 is the best integer point in L 5 , the regions L 2 and L 6 might

contain better feasible solutions, and we must continue the procedure by

analyzing these regions.

In L 6 , the only feasible point is x1 = 0, x2 = 5, giving an objective value z =

+40. This is better than the previous integer point and thus the lower bound

on z ? improves, so that 40 ? z ? ? 41. We could terminate with this integer

solution knowing that it is within 2. 5 percent of the true optimum. However,

L 2 could contain an even better integer solution. The linear-programming

solution in L 2 has x1 = x2 = 3 and z = 39. This is the best integer point in L

2 but is not as good as x1 = 0, x2 = 5, so the later point (in L 6) must

indeed be optimal.

It is interesting to note that, even if the solution to L 2 did not give x1 and x2

integer, but had z < 40, then no feasible (and, in particular, no integer point)

in L 2 could be as good as x1 = 0, x2 = 5, with z = 40. Thus, again x1 = 0,

x2 = 5 would be known to be optimal. Thisobservationhas important

computational implications, 292 Integer Programming 9. 5 Figure 9. 14 since

it is not necessary to drive every branch in the enumeration tree to an

integer or infeasible solution, but only to an objective value below the best

integer solution.

The problem now is solved and the entire solution procedure can be

summarized by the enumeration tree in Fig. 9. 15. Figure 9. 15 Further

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 26

Considerations There are three points that have yet to be considered

withrespectto the branch-and-bound procedure: i) Can the linear programs

corresponding to the subdivisions be solved ef? ciently? ii) What is the best

way to subdivide a given region, and which unanalyzed subdivision should be

considered next? 9. 5 Branch-And-Bound 293 iii) Can the upper bound (z =

41, in the example) on the optimal value z ? of the integer program be

improved while the problem is being solved?

The answer to the ? rst question is an unquali? ed yes. When moving from a

region to one of its subdivisions, we add one constraint that is not satis? ed

by the optimal linear-programming solution over the parent region.

Moreover, this was onemotivationfor the dual simplex algorithm, and it is

natural to adopt that algorithm here. Referring to the sample problem will

illustrate the method. The ? rst two subdivisions L 1 and L 2 in that example

were generated by adding the following constraints to the original problem:

For subdivision 1 : For subdivision 2 : x2 ? 4 x2 ? or or x2 ? s3 = 4 x2 + s4 =

3 (s3 ? 0); (s4 ? 0). In either case we add the new constraint to the optimal

linear-programming tableau. For subdivision 1, this gives: 3 1? 5 (? z) ? 4 s1 ?

4 s2 = ? 41 4 ? Constraints from the ? 1 9 9 = x1 + 4 s1 ? 4 s2 4 ? optimal

canonical 5 1 15 ? form xj? 4 s1 + 4 s2 = 2 4 ? x2 x1 , x2 , s1 , s2 , s3 ? 0, +

s3 = ? 4, Added constraint where s1 and s2 are slack variables for the two

constraints in the original problem formulation. Note that the new constraint

has been multiplied by ? 1, so that the slack variable s3 can be used as a

basic variable.

Since the basic variable x2 appears with a nonzero coef? cient in the new

constraint, though, we must pivot to isolate this variable in the second
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 27

constraint to re-express the system as: (? z) x1 5 3 ? 4 s1 ? 4 s2 1 5 x2 ? 4 s1

+ 4 s2 1 9 + 4 s1 ? 4 s2 = = = 1 ? 41 4 , 15 4, 1 ? 4, x1 , x2 , s1 , s2 , s3 ? 0.

5 1 ? 4 s1 + 4 s2 +s3 = 9 4, These constraints are expressed in the proper

form for applying the dual simplex algorithm, which will pivot next to make

s1 the basic variable in the third constraint. The resulting system is given by:

(? z) x1 x2 ? s2 ? s3 + 1 s2 + 9 s3 5 5 ? 3 s1 ? 1 s2 ? 4 s3 5 5 = ? 41, 9 = 5,

= 4, 1 = 5, This tableau is optimal and gives the optimal linear-programming

solution over the region L 1 as x1 = 9 , x2 = 5 4, and z = 41. The same

procedure can be used to determine the optimal solution in L 2 . When the

linear-programming problem contains many constraints, this approach for

recovering an optimal solution is very effective. After adding a new

constraint and making the slack variable for that constraint basic, we always

have a starting solution for the dual-simplex algorithm with only one basic

variable negative.

Usually, only a few dual-simplex pivoting operations are required to obtain

the optimal solution. Using the primal-simplex algorithm generally would

require many more computations. x1 , x2 , s1 , s2 , s3 ? 0. 294 Integer

Programming 9. 5 Figure 9. 16 Issue (ii) raised above is very important since,

if we can make our choice of subdivisions in such a way as to rapidly obtain a

good (with luck, near-optimal) integer solution z , then we can eliminate

many potential ? subdivisions immediately. Indeed, if any region has its

linear programming value z ? , then the objective ? value of no integer point

in that region can exceed z and the region need not be subdivided. There is

no ? universal method for making the required choice, although several

heuristic procedures have been suggested, such as selecting the subdivision

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 28

with the largest optimal linear-programming value. † Rules for determining

which fractional variables to use in constructing subdivisions are more

subtle. Recall that any fractional variable can be used to generate a

subdivision.

One procedure utilized is to look ahead one step in the dual-simplex method

for every possible subdivision to see which is most promising. The details are

somewhat involved and are omitted here. For expository purposes, we have

selected the fractional variable arbitrarily. Finally, the upper bound z on the

value z ? of the integer program can be improved as we solve the problem.

Suppose for example, that subdivision L 2 was analyzed before subdivisions

L 5 or L 6 in our sample problem. The enumeration tree would be as shown in

Fig. 9. 16. At this point, the optimal solution must lie in either L 2 or L 4 .

Since, however, the largest value for 5 any feasible point in either of these

regions is 40 9 , the optimal value for the problem z ? cannot exceed 40 5 . 9

Because z ? must be integral, this implies that z ? ? 40 and the upper bound

has been improved from the value 41 provided by the solution to the linear

program on L 0 . In general, the upper bound is given in this way as the

largest value of any ‘‘ hanging’’ box (one that has not been divided) in the

enumeration tree. Summary The essential idea of branch-and-bound is to

subdivide the feasible region to develop bounds z < z ? lt; z on z ? . For a

maximization problem, the lower bound z is the highest value of any feasible

integer point encountered. The upper bound is given by the optimal value of

the associated linear program or by the largest value for the objective

function at any ‘‘ hanging’’ box. After considering a subdivision, we must

branch to (move to) another subdivision and analyze it. Also, if either One
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 29

common method used in practice is to consider subdivisions on a last-

generated–? rst-analyzed basis. We used this rule in our previous example.

Note that data to initiate the dual-simplex method mentioned above must be

stored for each subdivision that has yet to be analyzed. This data usually is

stored in a list, with new information being added to the top of the list. When

required, data then is extracted from the top of this list, leading to the last-

generated–? rst-analyzed rule. Observe that when we subdivide a region into

two subdivisions, one of these subdivisions will be analyzed next. The data

required for this analysis already will be in the computer core and need not

be extracted from the list. † 9. 6 Branch-And-Bound 95 i) the linear program

over L j is infeasible; ii) the optimal linear-programming solution over L j is

integer; or iii) the value of the linear-programming solution z j over L j satis?

es z j ? z (if maximizing), then L j need not be subdivided. In these cases,

integer-programming terminology says that L j has been fathomed. † Case (i)

is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii)

fathoming by bounds. The ? ow chart in Fig. 9. 17 summarizes the general

procedure. Figure 9. 17 Branch-and-bound for integer-programming

maximization. † To fathom is de? ed as ‘‘ to get to the bottom of; to

understand thoroughly. ’’ In this chapter, fathomed might be more

appropriately de? ned as ‘‘ understood enough or already considered. ’’ 296

Integer Programming 9. 7 Figure 9. 18 9. 6 BRANCH-AND-BOUND FOR

MIXED-INTEGER PROGRAMS The branch-and-bound approach just described

is easily extended to solve problems in which some, but not all, variables are

constrained to be integral. Subdivisions then are generated solely by the

integral variables. In every other way, the procedure is the same as that

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 30

speci? ed above. A brief example will illustrate the method. ? = max z = ?

3x1 ? 2x2 + 10, subject to: x1 ? 2x2+ x3 5 = 2, 2x1 + x2 xj ? 0 3 + x4 = 2 , (

j = 1, 2, 3, 4), x2 and x3 integer. The problem, as stated, is in canonical

form, with x3 and x4 optimal basic variables for the associated linear

program. The continuous variable x4 cannot be used to generate

subdivisions since any value of x4 ? 0 potentially can be optimal.

Consequently, the subdivisions must be de? ned by x3 ? 2 and x3 ? 3. The

complete procedure is summarized by the enumeration tree in Fig. 9. 18. 1

The solution in L 1 satis? es the integrality restrictions, so z ? ? z = 8 2 .

The only integral variable with a fractional value in the optimal solution of L 2

is x2 , so subdivisions L 3 and L 4 are generated from this variable. Finally,

the optimal linear-programming value of L 4 is 8, so no feasible mixed-

integer solution in that region 1 can be better than the value 8 2 already

generated. Consequently, that region need not be subdivided and the

solution in L 1 is optimal. The dual-simplex iterations that solve the linear

programs in L 1 , L 2 , L 3 , and L 4 are given below in Tableau 1. The

variables s j in the tableaus are the slack variables for the constraints added

to generate the subdivisions.

The coef? cients in the appended constraints are determined as we

mentioned in the last section, by eliminating the basic variables x j from the

new constraint that is introduced. To follow the iterations, recall that in the

dual-simplex method, pivots are made on negative elements in the

generating row; if all elements in this row are positive, as in region L 3 , then

the problem is infeasible. 9. 7 Implicit Enumeration 297 9. 7 IMPLICIT

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 31

ENUMERATION A special branch-and-bound procedure can be given for

integer programs with only binary variables.

The algorithm has the advantage that it requires no linear-programming

solutions. It is illustrated by the following example: z ? = max z = ? 8x1 ?

2x2 ? 4x3 ? 7x4 ? 5x5 + 10, subject to: ? 3x1 ? 3x2 + x3 + 2x4 + 3x5 ? ? 2, ?

5x1 ? 3x2 ? 2x3 ? x4 + x5 ? ? 4, xj = 0 or 1 (j = 1, 2, . . . , 5). One way to

solve such problems is complete enumeration. List all possible binary

combinations of the variables and select the best such point that is feasible.

The approach works very well on a small problem such as this, where there

are only a few potential 0–1 combinations for the variables, here 32.

In general, though, an n-variable problem contains 2n 0–1 combinations; for

large values of n, the exhaustive approach is prohibitive. Instead, one might

implicitly consider every binary combination, just as every integer point was

implicitly considered, but not necessarily evaluated, for the general problem

via branch-and-bound. Recall that in the ordinary branch-and-bound

procedure, subdivisions were analyzed by maintaining the linear constraints

and dropping the integrality restrictions. Here, we adopt the opposite tactic

of always 298 Integer Programming 9. 7 maintaining the 0–1 restrictions, but

ignoring the linear inequalities.

The idea is to utilize a branch-and-bound (or subdivision) process to ? x some

of the variables at 0 or 1. The variables remaining to be speci? ed are called

free variables. Note that, if the inequality constraints are ignored, the

objective function is maximized by setting the free variables to zero, since

their objectivefunction coef? cients are negative. For example, if x1 and x4

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 32

are ? xed at 1 and x5 at 0, then the free variables are x2 and x3 . Ignoring

the inequality constraints, the resulting problem is: max [? 8(1) ? 2x2 ? 4x3 ?

7(1) ? 5(0) + 10] = max [? 2x2 ? 4x3 ? 5], subject to: x2 and x3 binary.

Since the free variables have negative objective-function coef? cients, the

maximization sets x2 = x3 = 0. The simplicity of this trivial optimization, as

compared to a more formidable linear program, is what we would like to

exploit. Returning to the example, we start with no ? xed variables, and

consequently every variable is free and set to zero. The solution does not

satisfy the inequality constraints, and we must subdivide to search for

feasible solutions. One subdivision choice might be: For subdivision 1 : x1 =

1, For subdivision 2 : x1 = 0. Now variable x1 is ? xed in each subdivision.

By our observations above, if the inequalities are ignored, the optimal

solution over each subdivision has x2 = x3 = x4 = x5 = 0. The resulting

solution in subdivision 1 gives z = ? 8(1) ? 2(0) ? 4(0) ? 7(0) ? 5(0) + 10 = 2,

9. 7 Implicit Enumeration 299 and happens to satisfy the inequalities, so that

the optimal solution to the original problem is at least 2, z ? ? 2. Also,

subdivision 1 has been fathomed: The above solution is best among all 0–1

combinations with x1 = 1; thus it must be best among those satisfying the

inequalities. No other feasible 0–1 combination in subdivision 1 needs to be

evaluated explicitly.

These combinations have been considered implicitly. The solution with x2 =

x3 = x4 = x5 = 0 in subdivision 2 is the same as the original solution with

every variable at zero, and is infeasible. Consequently, the region must be

subdivided further, say with x2 = 1 or x2 = 0, giving: The enumeration tree

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 33

to this point is as given in Fig. 9. 19. For subdivision 3 : For subdivision 4 : x1

= 0, x2 = 1; x1 = 0, x2 = 0. Figure 9. 19 Observe that this tree differs from

the enumeration trees of the previous sections. For the earlier procedures,

the linear-programming solution used to analyze each subdivision was speci?

ed explicitly in a box.

Here the 0–1 solution (ignoring the inequalities) used to analyze subdivisions

is not stated explicitly, since i it is known simply by setting free variables to

zero. In subdivision 3 , for example, x1 = 0 and x2 = 1 are ? xed, and the

free variables x3 , x4 andx5 are set to zero. Continuing to ? x variables and

subdivide in this fashion produces the complete tree shown in Fig. 9. 20. The

tree is not extended after analyzing subdivisions 4, 5, 7, 9, and 10, for the

following reasons. i i) At 5 , the solution x1 = 0, x2 = x3 = 1 , with free

variables x4 = x5 = 0, is feasible, with z = 4 , thus providing an improved

lower bound on z ? i ii) At 7 , the solution x1 = x3 = 0, x2 = x4 = 1, and free

variable x5 = 0, has z = 1 < 4, so that no i solution in that subdivision can be

as good as that generated at 5 . i i iii) At 9 and 10 , every free variable is ?

xed. In each case, the subdivisions contain only a single point, which is

infeasible, and further subdivision is not possible. i iv) At 4 , the second

inequality (with ? xed variables x1 = x2 = 0) reads: No 0–1 values of x3 , x4 ,

or x5 ‘‘ completing’’ the ? xed variables x1 = x2 = 0 satisfy this constraint,

since the lowest value for the lefthand side of this equation is ? when x3 =

x4 = 1 and x5 = 0. The subdivision then has no feasible solution and need

not be analyzed further. The last observation is completely general. If, at any

point after substituting for the ? xed variables, the sum of the remaining

negative coef? cients in any constraint exceeds the righthand side, then the

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 34

region de? ned by these ? xed variables has no feasible solution. Due to the

special nature of the 0–1 problem, there are a number of other such tests

that can be utilized to reduce the number of subdivisions generated. The ef?

iency of these tests is measured by weighing the time needed to perform

them against the time saved by fewer subdivisions. The techniques used

here apply to any integer-programming problem involving only binary

variables, so that implicit enumeration is an alternative branch-and-bound

procedure for this class of problems. In this case, subdivisions are fathomed

if any of three conditions hold: ? 2x3 ? x4 + x5 ? ? 4. 300 Integer

Programming 9. 7 Figure 9. 20 i) the integer program is known to be

infeasible over the subdivision, for example, by the above infeasibility test;

ii) the 0–1 solution obtained by setting free variables to zero satis? s the

linear inequalities; or iii) the objective value obtained by setting free

variables to zero is no larger than the best feasible 0–1 solution previously

generated. These conditions correspond to the three stated earlier for

fathoming in the usual branch-and-bound procedure. If a region is not

fathomed by one of these tests, implicit enumeration subdivides that region

by selecting any free variable and ? xing its values to 0 or 1. Our arguments

leading to the algorithm were based upon stating the original 0–1 problem in

the following standard form: 1. the objective is a maximization with all coef?

cients negative; and 2. onstraints are speci? ed as ‘‘ less than or equal to’’

inequalities. As usual, minimization problems are transformed to

maximization by multiplying cost coef? cients by ? 1. If x j appears in the

maximization form with a positive coef? cient, then the variable substitution

x j = 1 ? x j everywhere in the model leaves the binary variable x j with a

negative objective-function coef? cient. Finally, ‘‘ greater than or equal to’’
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 35

constraints can be multiplied by ? 1 to become ‘‘ less than or equal to’’

constraints; and generalequalityconstraints are converted to inequalities by

the special technique discussed in Exercise 17 of Chapter 2.

Like the branch-and-bound procedure for general integer programs, the way

we choose to subdivide regions can have a profound effect upon

computations. In implicit enumeration, we begin with the zero solution x1 =

x2 = · · · = xn = 0 and generate other solutions by setting variables to 1.

One natural approach is to subdivide based upon the variable with highest

objective contribution. For the sample problem, this would imply subdividing

initially with x2 = 1 or x2 = 0. Another approach often used in practice is to

try to drive toward feasibility as soon as possible.

For instance, when x1 = 0, x2 = 1, and x3 = 0 are ? xed in the example

problem, we could subdivide based upon either x4 or x5 . Setting x4 or x5 to

1 and substituting for the ? xed variables, we ? nd that the constraints

become: 9. 8 Cutting Planes 301 x4 = 1, x5 (free) = 0 : ? 3(0) ? 3(1) + (0) +

2(1) + 3(0) ? ? 2, ? 5(0) ? 3(1) ? 2(0) ? 1(1) + (0) ? ? 4, x5 = 1, x4 (free) = 0 :

? 3(0) ? 3(1) + (0) + 2(0) + 3(1) ? ? 2, ? 5(0) ? 3(1) ? 2(0) ? 1(0) + (1) ? ? 4.

For x4 = 1, the ? rst constraint is infeasible by 1 unit and the second

constraint is feasible, giving 1 total unit of infeasibility.

For x5 = 1, the ? rst constraint is infeasible by 2 units and the second by 2

units, giving 4 total units of infeasibility. Thus x4 = 1 appears more

favorable, and we would subdivide based upon that variable. In general, the

variable giving the least total infeasibilities by this approach would be

chosen next. Reviewing the example problem the reader will see that this

https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 36

approach has been used in our solution. 9. 8 CUTTING PLANES The cutting-

plane algorithm solves integer programs by modifying linear-programming

solutions until the integer solution is obtained.

It does not partition the feasible region into subdivisions, as in branch-and-

bound approaches, but instead works with a single linear program, which it

re? nes by adding new constraints. The new constraints successively reduce

the feasible region until an integer optimal solution is found. In practice, the

branch-and-bound procedures almost always outperform the cutting-plane

algorithm. Nevertheless, the algorithm has been important to the evolution

of integer programming. Historically, it was the ? rst algorithm developed for

integer programming that could be proved to converge in a ? nite number of

steps.

In addition, even though the algorithm generally is considered to be very

inef? cient, it has provided insights into integer programming that have led

to other, more ef? cient, algorithms. Again, we shall discuss the method by

considering the sample problem of the previous sections: z ? = max 5x1 +

8x2 , subject to: x1 + x2 + s1 = 6, 5x1 + 9x2 + s2 = 45, x1 , x2 , s1 , s2 ? 0.

s1 and s2 are, respectively, slack variables for the ? rst and second

constraints. Solving the problem by the simplex method produces the

following optimal tableau: (? z) x1 3 1 5 ? 4 s1 ? 4 s2 = ? 41 4 , 1 5 x2 ? s1 +

4 s2 = 9 1 + 4 s1 ? 4 s2 = 9 4, 15 4, (11) x1 , x2 , s1 , s2 , s3 ? 0. Let us

rewrite these equations in an equivalent but somewhat altered form: (? z) x1

? 2s1 ? s2 +42 = x2 ? 2s1 3 4 1 4 3 4 3 1 ? 4 s1 ? 4 s2 , 1 3 ? 4 s1 ? 4 s2 , 3 1

? 4 s1 ? 4 s2 , +2s1 ? s2 ? 2 = ? 3= x1 , x2 , s1 , s2 ? 0. These algebraic

manipulations have isolated integer coef? cients to one side of the equalities
https://assignbuster.com/integer-programming/

 Integer programming – Paper Example Page 37

and fractions to the other, in such a way that the constant terms on the

righthand side are all nonnegative and the slack variable coef? cients on the

righthand side are all nonpositive. 302 Integer Programming 9. 8

In any integer solution, the lefthand side of each equation in the last tableau

must be integer. Since s1 and s2 are nonnegative and appear to the right

with negative coef? cients, each righthand side necessarily must be less than

or equal to the fractional constant term. Taken together, these two

observations show that both sides of every equation must be an integer less

than or equal to zero (if an integer is less than or equal to a fraction, it

necessarily must be 0 or negative). Thus, from the ? rst equation, we may

write: 3 4 3 1 ? 4 s1 ? 4 s2 ? 0 and integer, or, introducing a slack variable s3

, 3 4 3 1 ? 4 s1 ? 4 s2 + s3 = 0, 3 ? 0 s4 ? 0 s5 ? 0 and integer. (C1)

Similarly, other conditions can be generated from the remaining constraints:

1 4 3 4 1 3 ? 4 s1 ? 4 s2 + s4 = 0

https://assignbuster.com/integer-programming/

	Integer programming

