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Introduction 
Filamentous fungi have a major impact on many aspects of human diets and 

health more broadly. Their benefits are derived from various mechanisms 

underlying the production of enzymes, organic acids, and flavors, as well as, 

more importantly, antibiotic compounds and therapeutic molecules ( Satish 

et al., 2020 ). Moreover, they are well known as appealing microbial cell 

factories that possess the industrial capability to secrete a large repertoire of

different bioactive secondary metabolites, such as paclitaxel and 

swainsonine, which have become important clinical therapeutics (

Hautbergue et al., 2018 ; Keller, 2019 ; Mosunova et al., 2020 ). There has 

been a focus on research into secondary metabolites because some 

secondary metabolites can be used as anti-cancer drugs and anti-bacterial 

compounds ( Lobanovska and Pilla, 2017 ). A majority of these secondary 

metabolites can be classified into three chemical categories: polyketides 

derived from acyl-CoAs, terpenes produced from acyl-CoAs, and small 

peptides derived from amino acids ( Keller, 2019 ; Mosunova et al., 2020 ). 

Most of the genes involved in the biosynthesis of secondary metabolites are 

frequently clustered together on chromosomes in biosynthetic gene clusters 

(SM-BGCs), and some are not expressed under standard laboratory culture 

conditions ( Lin et al., 2013 ; Jiang et al., 2015 ; Nah et al., 2017 ; Keller, 

2019 ; Kjaerbolling et al., 2019 ). Another characteristic of genes in such 

clusters is that they are not constitutively expressed, and formerly actively 

expressed genes can become transcriptionally quiescent upon repeated 

culturing ( Kale et al., 1994 ; Hoffmeister and Keller, 2007 ). Although 

secondary metabolite biosynthetic genes in filamentous fungi are generally 
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found in clusters that provide a convenient genetic locus for manipulation (

Hoffmeister and Keller, 2007 ), the exploitation of new bioactive compounds 

is hindered by intrinsic difficulties involving complex genetic backgrounds 

and poor efficiency of gene targeting. With increases in genomic insight and 

gene mining from high-throughput sequencing data and the advancement of 

genomics and transcriptomics, there has been an acceleration in the 

identification and utilization of SM-BGCs. Thus, elucidating the genetic basis 

and the biosynthetic pathways of secondary metabolites has become 

comparatively easier. 

Filamentous fungi, such as Trichoderma reesei , Aspergillus niger , 

Aspergillus oryzae , and Aspergillus nidulans , are universally used as model 

eukaryotic microorganisms to produce industrial secondary metabolites. For 

example, researchers have utilized rice blast fungus Pyricularia oryzae to 

yield tenuazonic acid, Aspergillus fumigatus to secrete the natural product 

trypacidin, Fusarium fujikuroi to produce gibberellic acid, Fusarium 

heterosporum to synthesize the polyketide equisetin, A. nidulans to secrete 

microperfuranone, and Penicillium chrysogenum to biosynthesize sorbicillin (

Gauthier et al., 2012 ; Kakule et al., 2015 ; Yun et al., 2017 ; Shi et al., 2019

). However, while the genetic manipulation of secondary metabolites in 

filamentous fungi is being explored, there are several factors that limit 

genetic research on secondary metabolite biosynthetic pathways of 

filamentous fungi. First, filamentous fungi, like the model organism yeast, 

have complex genetic backgrounds when compared to prokaryotes ( Song et

al., 2019 ). Second, it is difficult to apply genetic manipulation and molecular

biology tools in filamentous fungi. Furthermore, low homologous 
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recombination efficiency (generally less than 5%) and a lack of suitable 

selection markers, and plasmids also hamper the exploitation of novel 

secondary metabolites from filamentous fungi ( Mei et al., 2019 ). 

More recently, a variety of genetic engineering methods, such as RNA 

interference, heterologous expression, gene-targeting strategies, and zinc 

finger nuclease (ZFN) and transcription-activator-like effector nuclease 

(TALEN) – based genome editing have been developed to explore and 

demonstrate the biosynthetic and regulatory mechanisms in filamentous 

fungi ( Boettcher and McManus, 2015 ; Wang et al., 2017 ; Dasgupta et al., 

2020 ). Although the existing approaches can be utilized to edit target genes

at the genomic level, these do not meet the needs of industrial secondary 

metabolite production in filamentous fungi owing their low editing efficiency 

and cumbersome manipulation ( Shi et al., 2017 ). Thus, the exploitation of 

new secondary metabolites with potential pharmaceutical applications in 

filamentous fungi is extremely challenging. Fortunately, the emergence of 

the clustered regularly interspersed short palindromic repeats 

(CRISPR)/associated protein (Cas) system in recent years has raised hopes of

solving the problem presented by the largely inefficient gene editing tools 

available for use in filamentous fungi. The current CRISPR/Cas systems were 

discovered in archaea and bacteria and can be classified into three group 

based on the different Cas effectors (Cas9, Cas13, and Cas12), which can 

then be further divided into six types and more than 20 subtypes ( Makarova

et al., 2018 ; Li et al., 2019 ). The type-II CRISPR/Cas system from 

Streptococcus pyogenes has been widely applied across species, including 

filamentous fungi, as it is much simpler than other CRISPR systems and has 
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proven to be particularly powerful for use in precise DNA modification ( Cong

et al., 2013 ; Deng et al., 2017b ). Using specific codon optimization and in 

vitro RNA transcription, Liu et al. (2015) first adopted the CRISPR/Cas9 

system in the filamentous fungus T. reesei and achieved relatively high 

homologous recombination efficiencies (> 93%) when the lengths of the 

homology arms were 200 bp. In the same year, Nodvig et al. (2015) 

successfully targeted the yA gene by applying this system in the model 

fungus A. nidulans and obtained a genome-edited phenotype. Additionally, 

Fuller et al. (2015) demonstrated that the CRISPR/Cas9 system can be 

applied to high-efficiency gene disruption in A. fumigatus . These instances 

illustrate that this powerful system has been widely and effectively applied 

to industrial filamentous fungi. More details about the CRISPR/Cas9 system 

and its specific application in the biosynthesis of secondary metabolites by 

filamentous fungi are reviewed in the following sections. 

This review introduces and summarizes the current knowledge and 

applications of the CRISPR/Cas9 system in filamentous fungi. By detailing 

several examples, we introduce the specific application of the CRISPR/Cas9 

system and CRISPRa for precise gene editing and gene cluster activation, 

respectively. Additionally, we discuss and summarize the challenges and 

limitations as well as further prospects of this technology in the production of

secondary metabolites by filamentous fungi. Our review lays a solid 

foundation for the exploration of secondary metabolites in filamentous fungi 

and will be beneficial to future research on activating silent gene clusters 

involved in secondary metabolites produced by filamentous fungi. 
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Principle and Advantages of the CRISPR/CAS9 System 
The CRISPR/Cas9 system that has emerged as an advanced technology for 

genome engineering originated from adaptive immune systems in bacteria 

as a special defense mechanism against invading viruses and plasmids (

Barrangou and Marraffini, 2014 ; Wang and Coleman, 2019 ). This genome 

editing system is composed of two components, a Cas9 nuclease and a guide

RNA molecule (gRNA) that targets the nuclease to a specific genomic target 

site in the genome ( Deng et al., 2017b ). The single chimeric guide RNA 

(sgRNA) consisting of a fusion of a CRISPR RNA (crRNA) and a fixed trans- 

activating crRNA (tracrRNA) are processed by the endogenous bacterial 

machinery to generate the mature gRNA ( Deltcheva et al., 2011 ). The Cas9 

endonuclease is guided to a specific locus by a gRNA, which then forms 

Watson-Crick base pairs with the target DNA sequence, thereby permitting 

Cas9 to break the double-stranded DNA at specific sites ( Figure 1 ; Doudna 

and Charpentier, 2014 ; Mei et al., 2019 ). Importantly, to achieve the 

complementary target-DNA binding and cleavage, Cas9 requires the 

presence of its major specificity determinant, a well-defined short 

protospacer adjacent motif (PAM) that is located immediately adjacent to the

non-target DNA strand ( Mojica et al., 2009 ; Sternberg et al., 2014 ). 

Subsequently, two unique repair mechanisms ( Figure 1 ), non-homologous 

end-joining (NHEJ) or homology-directed repair (HDR), mend DNA double-

strand breaks (DSBs). NHEJ is an error-prone and dominant RNA repair 

pathway for DSBs via direct ligation of the break ends without using a 

homologous template. Thus, it can sometimes cause targeted mutations, 

such as random deletions, insertions, replacement of bases, targeted 
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chromosomal rearrangements, or frameshift mutations at DNA breakage 

points leading to premature stop codons within the open reading frame 

(ORF) of the targeted gene ( Kim and Kim, 2014 ; Boettcher and McManus, 

2015 ; Mei et al., 2019 ). Compared to NHEJ, which is the most common DSB 

repair mechanism in microorganisms, HDR is a less efficient but high-fidelity 

pathway. HDR precisely repairs DSBs with the help of a homologous DNA 

template or exogenous donor fragment, thus having the potential to 

generate gene modifications by introducing desired nucleotide substitutions 

or gene insertions ( Bortesi and Fischer, 2015 ; El-Sayed et al., 2017 ). With 

the advancement of research and accumulating knowledge on endogenous 

DNA repair mechanisms, a series of technological tools have been explored 

to precisely induce DSBs in target genes by using exogenous nucleases. Prior

to CRISPR, genome engineering strategies utilizing ZFN or TALEN-based 

genome editing required the design, generation, and validation of an 

appropriate protein for a specific DNA locus of interest, thus limiting their 

widespread application ( Doudna and Charpentier, 2014 ; Boettcher and 

McManus, 2015 ; El-Sayed et al., 2017 ; Leitão et al., 2017 ). Owing to its 

high efficiency and the possibility of multi-gene editing, the CRISPR/Cas9 

system has rapidly emerged as an extraordinary genome engineering 

approach has outstripped the performance of earlier technologies ( Doudna 

and Charpentier, 2014 ; Wang et al., 2017 ). 

FIGURE 1  

Principle of the CRISPR/Cas9 genome engineering tool. Nuclease-induced 

double-stranded breaks (DSBs) can be repaired by non-homologous end 
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joining (NHEJ) or homology-directed repair (HDR) pathways. Imprecise NHEJ-

mediated repair can produce insertion/deletion/frameshift mutations of 

variable lengths at DSB sites. Homologous recombination (HR)-mediated 

repair can introduce precise point mutations, by substitutions, insertions, or 

deletions, depending on the donor DNA template. 

Applications of CRISPR/CAS9 in Filamentous Fungi 
The versatility and programmability of Cas9 has made the CRISPR/Cas9 

genome editing strategy a revolutionary approach in biological research, and

it has been considered useful for creating gene deletions, substitutions, and 

insertions in filamentous fungi. Here, we gather considerable information 

regarding the application of the CRISPR/Cas9 system in filamentous fungi 

over recent years ( Table 1 ). Apart from genetic modification, Cas9 can also 

modulate transcription without editing the genomic sequence by fusing the 

enzymatically inactive version of Cas9 (dCas9) with transcriptional 

repression and activation domains ( Gilbert et al., 2013 , 2014 ; Chavez et 

al., 2015 ). The former approach, fusion of dCas9 with repression domains (e.

g., KRAB/Kox1), has been used to negatively regulate the transcription of 

specific genomic loci ( Gilbert et al., 2013 ; Leitão et al., 2017 ). This 

strategy, commonly termed CRISPR inhibition (CRISPRi), decreases the 

transcription of target DNA loci mainly by blocking transcriptional elongation,

impeding transcription factor binding, or interfering with RNA polymerase 

transcription initiation ( Bikard et al., 2013 ; Larson et al., 2013 ; Doudna and

Charpentier, 2014 ; Piatek et al., 2015 ). Several reports have revealed that 

this approach can be successfully applied to simultaneously repress the 

transcription of multiple target genes and that it is reversible ( Bikard et al., 
https://assignbuster.com/applications-of-crisprcas9-in-the-synthesis-of-
secondary-metabolites-in-filamentous-fungi/



 Applications of crispr cas9 in the synth... – Paper Example  Page 9

2013 ; Gilbert et al., 2013 ; Zhao et al., 2014 ). CRISPR activation (CRISPRa), 

can be achieved through direct fusing dCas9 with activation domains, such 

as VP64/p65/HSF1 ( Bikard et al., 2013 ; Gilbert et al., 2014 ; Konermann et 

al., 2015 ; Jia et al., 2018 ; Strezoska et al., 2020 ). For example, Cheng et al.

(2013) achieved robust endogenous gene activation utilizing VP160 

transcriptional activation domain in human and mouse cells. With the 

intention of enhancing transcriptional activation, Chavez et al. (2015) 

introduced a unique activation strategy that required the fusion of dCas9 to 

three activation domains, VP64-p65-Rta (VPR) and thus proved its utility in 

activating endogenous coding and non-coding genes. CRISPRa also has 

potential in exploring gene expression in filamentous fungi, particularly, for 

genes that are closely related to secondary metabolite biosynthesis ( Wang 

and Coleman, 2019 ). For example, Roux et al. (2020) constructed the first 

CRISPRa system in A. nidulans by using the same method as Chavez et al. 

(2015) to improve production of the compound microperfuranone and 

identify a new metabolite of dehydromicroperfuranone. Filamentous fungi 

have the capacity to produce a diverse spectrum of valuable secondary 

metabolites, and the genetic potential of secreting important metabolites 

has not yet been fully utilized for most SM-BGCs. Therefore, there is little 

doubt that a strategy that combines the CRISPR/Cas9 technology (i. e., 

CRISPRa) with the activation of expression of secondary metabolite 

biosynthetic clusters is on the horizon. This would be particularly useful in 

developing bioactive products or derivatives for biopharmaceuticals. 

TABLE 1  
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Applications of CRISPR-Cas9 genome engineering tool in filamentous fungi. 

Specific Application of CRISPR/CAS9 in Secondary 
Metabolites Synthesis Pathways 
In the past few years, the CRISPR/Cas9 system has been introduced into 

filamentous fungi to explore the potential of this strategy in modulating 

production of secondary metabolites. From A. oryzae and T. reesei to A. 

niger and A. nidulans , CRISPR/Cas9 based systems have become versatile 

platforms for precise genome editing, and great progress has already been 

made for production of valuable secondary metabolites. Here, we highlight 

four examples illustrating the application of CRISPR/Cas9 (gene 

deletion/substitution/insertion) and CRISPRa (gene cluster activation) 

systems in filamentous fungi. 

Application of CRISPR/Cas9-Based Genome Editing in the Production of 
Gibberellic Acid by Fusarium fujikuroi 
Natural products derived from the secondary metabolism of filamentous 

fungi have a wide array of applications, especially in the pharmaceutical and 

agricultural industries. Gibberellic acids (GAs) are a class of natural plant 

growth hormones that are notably produced in F. fujikuroi and are widely 

applied to regulate the growth of diverse plant species. Among all GAs, the 

most biologically active ones are GA1, GA3, GA4, and GA7 ( Ullah et al., 2014

). Of these, the production and application of GA3 has reached a particularly 

mature stage, while that of GA4 and GA7 have been hindered by the low 

efficiency of the existing production methods ( Joshi et al., 2018 ; Qian et al., 

2018 ). 
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Shi et al. (2019) established an efficient CRISPR/Cas9-based genome editing 

tool to improve the production of GA4 and GA7 in F. fujikuroi ( Figure 2 ). 

Initially, a f FuCas9 vector carrying different nuclear localization signals 

(NLSs) was constructed. The endogenous NLS from histone H2B (HTB NLS ) 

was selected to individually fuse with the f FuCas9 protein, owing to its 

higher editing efficiency and previous success in Fusarium oxysporum (

Wang et al., 2018 ). The f FuCas9 fusion protein vector along with sgRNAs 

was assembled in vitro to establish the CRISPR/Cas9 system ( pUC-f FuCas9-

HTB NLS -hph ). Simultaneously, owing to the need for efficient sgRNA 

transcription, the endogenous 5S rRNA ( Ff5SrRNA ) was utilized to express 

the sgRNA designed for the target gene. Subsequently, the Ff5SrRNA-P450-3

sgRNA cassette was synthesized with three sgRNAs and ligated into the 

EcoRI site of pUC-f FuCas9-HTB NLS -hph , thus yielding the pUC-f FuCas9-

HTB NLS -hph-P450-3 vector. This vector was used to disrupt the gene 

encoding P450-3 , thus yielding the final disruption mutant Δ P450-3 . 

Subsequently, sgRNA and f FuCas9 vector were introduced into F. fujikuroi 

through the modified protoplast-based polyethylene glycol and Ca 2+ 

transformation method ( Hwang and Ahn, 2016 ). Additionally, 

overexpression of two key genes encoding copalyl diphosphate 

synthase/kaurene synthase ( Cps/Ks ) and a truncated HMG-CoA reductase (

tHmgR ) were also performed separately and simultaneously to explore the 

possibility of increasing the amount of GA4/GA7 mixture produced based on 

previous research ( Albermann et al., 2013 ). To overexpress Cps/Ks and 

tHmgR genes, the f FuCas9 vector and donor vector were introduced by 

protoplast transformation into the Δ P450-3 disruption mutant. The resulting 
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transformants were subjected to a second round of hygromycin screening 

and a series of cultivation cycles and finally inoculated into the fermentation 

medium. The contents of four GAs in the supernatant fraction of the 

fermentation medium were determined by high-performance liquid 

chromatography (HPLC). Compared with the control strain (88. 38 mg/L), the 

accumulation of a GA4/GA7 mixture was evidently improved in the Δ P450-3 

mutant (410. 27 mg/L). Thus, the CRISPR/Cas9-based genome editing system

proved to be efficient enough to enhance the levels of secondary metabolites

in F. fujikuroi . Thus, overexpression of both Cps/Ks and tHmgR has been 

demonstrated to be an effective mean of increasing the contents of GA4 and 

GA7 (by 24. 23% to 509. 68 mg/L and by 70. 14% to 698. 03 mg/L, 

respectively), which is clearly higher than in the Δ P450-3 disruption mutant. 

Indeed, the combined concentration of GA4 and GA7 reached a higher level 

(716. 37 mg/L) when Cps/Ks and tHmgR were overexpressed simultaneously 

in the Δ P450-3 mutant. Thus, Shi et al. (2019) successfully demonstrated 

that CRISPR/Cas9-based genome editing strategies and overexpression 

approaches are suitable for improving the content of GA4/GA7 mixtures. 

These results will also greatly facilitate further research on production of 

other metabolites in F. fujikuroi . 

FIGURE 2  

Application of the CRISPR/Cas9-based genome editing tool in Fusarium 

fujikuroi for improving the production of the gibberellic acids GA4 and GA7. 
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Functional Reconstitution of Trypacidin Biosynthesis Gene Cluster in A. 
fumigatus by the CRISPR/Cas9-Based Approach 
Aspergillus fumigatus is an important human pathogen responsible for 

various forms of aspergillosis in humans as well as in animals ( Paulussen et 

al., 2017 ). It also possesses the capacity to secrete a large repertoire of 

natural products, some of which are involved in pathogenicity ( Scharf et al., 

2014 ). Trypacidin, one of the natural antimicrobial antibiotic compounds 

produced by A. fumigatus , is a spore-borne product that has been 

demonstrated to be a potent toxin to human lung cells ( Gauthier et al., 2012

). This compound may also be a virulence determinant that plays a role in 

the phagocytosis of different cells such as murine alveolar macrophages and 

the amoeba Dictyostelium discoideum ( Mattern et al., 2015 ). 

In a previous study, Frisvad et al. (2009) analyzed and detected trypacidin in

30 out 40 A. fumigatus strains of different origins, including the clinical 

isolate strain Af293. The remaining 10 strains from which they did not isolate

trypacidin, included a second clinical isolate and lab strain CEA10 ( Frisvad et

al., 2009 ). Based on these results, Weber et al. (2017) explored the 

mechanisms underlying the difference in trypacidin production and 

reconstituted the biosynthetic pathway of this compound by advanced 

genome editing in a non-producing strain. Initially, the area of surrounding a 

single nucleotide insertion in the polyketide synthase (PKS) coding gene 

tynC that potentially led to a frameshift and appearance of a premature stop 

codon in the CEA10 strain genome was sequenced from the tynC alleles of 

Af293 as well as CEA10 and its descendant strain CEA17 (Δ akuBKU 80 ) (

Throckmorton et al., 2016 ). The sequencing results identified a single 
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adenosine base insertion at position 3881 of tynC in strain CEA10 and Δ 

akuBKU 80 . This insertion resulted in a premature stop codon, thus 

eliminating the predicted acyl carrier protein (ACP) and the product template

(PT) domains that are essential for the catalytic function of the PKS. The 

authors then performed single nucleotide editing by the traditional gene 

substitution method and detected trypacidin in the complemented strain. 

However, this is a cumbersome multistep method. Therefore, an alternative 

strategy using a CRISPR/Cas9-based tool was adopted to reconstitute 

trypacidin production ( Figure 3 ). Weber et al. (2017) initially constructed a 

recombinant Cas9 expression cassette and integrated it into strain CEA17 Δ 

akuB pyrG + ( akuB KU80 tet ON - cas9 ). They then developed a plasmid 

containing a split-marker ( Kuck and Hoff, 2010 ) and gRNA ( pJW split-ptrA 

tynC ), which was finally transformed into the same strain. By adding 

doxycycline to the fungal preculture before transformation, the expression of

the Cas9 gene was induced to cause gene editing at the tynC locus. 

Subsequently, the plasmid pJW split-ptrA tynC coupled with donor DNA 

fragment were co-transformed into akuB KU80 tet ON - cas9 via protoplast-

mediated transformation ( Weidner et al., 1998 ). The genomic DNA at the 

target site of selected positive transformants was sequenced. LC-MS (

Mattern et al., 2015 ) was then applied to analyze stationary phase cultures, 

and a RNeasy Plant Mini kit was used to extract total RNA extraction. As 

expected, the single adenosine insertion was eliminated from the tynC locus 

of the akuB KU80 tet ON - cas9 tynC + strain, and the presence of trypacidin as

well as the tynC mRNA was detected. Thus, trypacidin was reconstituted 

through CRISPR/Cas9-mediated deletion of an adenosine insertion in the 
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genome. Compared with the conventional strategy, the CRISPR/Cas9 gene 

editing system was demonstrated to be highly effective and a powerful tool 

in researching natural products from biosynthetic genes in A. fumigatus . 

This approach can also be helpful for the integration of fusion-tags and paves

the way to exploit novel natural products derived from other filamentous 

fungi. 

FIGURE 3  

Overview of the CRISPR/Cas9-based tool for functional reconstitution of the 

Aspergillus fumigatus secondary metabolite (trypacidin) gene cluster. 

CRISPR/Cas9-Based Genome Editing in Glarea lozoyensis Produces 
Pneumocandin B 0 

Pneumocandins are lipohexapeptides within the echinocandin family, and 

they potently impede fungal cell wall formation via non-competitive 

inhibition of β-(1, 3)-glucan synthases ( Emri et al., 2013 ; Robbins et al., 

2017 ). One of these compounds, pneumocandin B 0 , can be isolated from 

the industrial filamentous fungus Glarea lozoyensis and is used in the 

synthesis of the potent antifungal drug caspofungin ( Emri et al., 2013 ; 

Balkovec et al., 2014 ). Because it has a strong inhibitory effect on invasive 

aspergillosis, caspofungin has been approved by the U. S. FDA for treating 

patients who are refractory or intolerant to standard therapy as well as for 

the main treatment of certain types of Candida infections ( Leonard et al., 

2007 ). Several researchers have explored the possibilities of improving 

pneumocandin B 0 production because of its value in the pharmaceutical 

industry. However, owing to limitations and a lack of sophistication of 
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traditional genetic tools, generation of a genetically engineered industrial G. 

lozoyensis strain has been impeded. 

Recently, Wei et al. (2020) utilized an efficient CRISPR/Cas9-based gene 

editing tool in G. lozoyensis SIPI1208 to significantly enhance the 

accumulation of pneumocandin B 0 ( Figure 4 ). Specifically, this strategy was

used to replace GloF with Ap-HtyE (proline hydroxylase, which is responsible 

for pneumocandin and echinocandin B biosynthesis, separately) in G. 

lozoyensis using CRISPR/Cas9 system-mediated homology-directed repair 

(HDR), thus changing the ratio of pneumocandin B 0 and pneumocandin C 0 

products (which constitute a pair of isomers). They initially designed a 

protospacer sequence targeted to gloF and constructed the pAgG-sgRNA- 

gloF plasmid to perform gloF gene editing. Thereafter, donor DNA was 

ligated into the linearized plasmid to construct the final replacement plasmid

pAgG-sgRNA- gloF-ap-htyE in order to create a knock-in mutant, ap-htyE . 

After Agrobacterium tumefaciens -mediated transformation, a series of 

experimental verifications confirmed that the genomic DNA of ap-htyE was 

knocked in correctly ( Zhang et al., 2003 ). Based on combined reversed-

phase-HPLC and normal phase-HPLC analyses of the fermentation extracts (

Osawa et al., 1999 ), it was found that PC 0 was not present in the final 

fermented product of the knock-in strain, as compared to 33. 5% PC 0 in the 

original strain G. lozoyensis . These results illustrated that the ability to 

produce PC 0 was abolished in the gene-edited strain generated using the 

CRISPR/Cas9 system, thus enabling increased industrial production of PB 0 (

Wei et al., 2020 ). In summary, the CRISPR/Cas9-based gene editing method 

can efficiently manipulate genes in G. lozoyensis and thus enabled for the 
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development of production of other secondary metabolites with similar 

characteristics. 

FIGURE 4  

Schematic representation of gene replacement by the CRISPR/Cas9 strategy.

The mutant retained the capability to produce pneumocandin B 0 , while the 

production of pneumocandin C 0 was abolished. 

CRISPR-Mediated Activation of micA Synthetase Gene Increases 
Microperfuranone Production 
The CRISPR-mediated strategy mentioned earlier is not only capable of 

genetic modification but can also modulate transcription by fusing dCas9 to 

transcriptional repression and activation domains (i. e., through CRISPRa and

CRISPRi). In contrast to the type-II CRISPR/Cas system, CRISPRa and CRISPRi 

do not require DSBs or donor DNA. The core part of achieving transcriptional 

activation is the link between the activation domain and dCas9, which then 

forms a complex with a sgRNA that includes an editable 20-nucleotide 

sequence complementary to the target site in the gene regulatory region (

Chavez et al., 2015 ; Tak et al., 2017 ). Furthermore, by concurrently 

expressing multiple gRNAs, several genes can be simultaneously activated 

with multiplexed CRISPRa ( McCarty et al., 2020 ). A previous study 

demonstrated that CRISPRa is a simple and universally applicable 

technology, by successfully employing it to increase the transcriptional 

efficiency of Myxococcus xanthus secondary metabolites ( Peng et al., 2018

). Nevertheless, the application of CRISPRa to the transcriptional regulation 
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of biosynthetic pathways of secondary metabolites in filamentous fungi could

be exploited further. 

In a recent report, researchers developed a CRISPRa system for A. nidulans 

for the first time in a filamentous fungus ( Roux et al., 2020 ). They used 

dCas9 protein fusion to VP64-p65-Rta (VPR, a fusion of three activation 

domains) and tested whether it leads to strong activation ( Chavez et al., 

2015 ). Initially, CRISPR/dLbCas12a-VPR and CRISPR/dSpCas9-VPR-based 

systems were constructed and tested to exploit their utility. Thereafter, by 

delivering the four-crRNA array on an AMA1-pyroA vector and the sgRNA in a

single AMA1- pyrG vector in two separate systems, they evaluated the 

multiplexing capability of the dCas12a- and dCas9- driven systems. 

Ultimately, the CRISPR/dLbCas12a-based CRISPRa system was chosen to 

probe the activation of biosynthetic genes in A. nidulans for its potential in 

BCG activation and accelerating the discovery of secondary metabolites (

Fonfara et al., 2016 ). Using this CRISPRa system, Sanson et al. (2018) 

targeted the micA gene (which is related to microperfuranone biosynthesis) 

with multiple crRNAs in order to improve the likelihood of achieving strong 

activation ( Figure 5 ). Following previously designed guidelines, region 119–

303 bp and 139–324 bp upstream of the micA transcription start site (

Jensen, 2018 ) were targeted with four-crRNAs to explore the utility of 

CRISPRa. Then, linearized pCRI001-3 vectors were used to promote 

homologous recombination followed by polyethylene glycol (PEG)-calcium-

based protoplast transformation ( Lim et al., 2012 ). Liquid chromatography 

coupled with diode array detector and mass spectrometer (LC-DAD-MS) 

analysis of the media extracts from all CRISPRa transformants showed that 
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the accumulation of microperfuranone was improved when compared with 

control strains. In addition, the dCas12a-driven system was also utilized to 

explore simultaneous activation of multiple genes in the mic cluster by 

adopting the above-mentioned method, but with the addition of two crRNA 

arrays delivered into the strains. Analysis of A. nidulans culture extracts by 

LC-DAD-MS indicated that microperfuranone levels decreased in the 

multiplexed-CRISPRa strains and also revealed a new compound. Subsequent

LC-MS/MS and NMR analysis identified this new compound as 

dehydromicroperfuranone, which is the metabolic product of the mic cluster 

( Figure 5 ). Thus, these results demonstrate that CRISPRa is efficient in 

multi-gene activation of BGCs in A. nidulans and can therefore be used to 

achieve higher throughput natural production of known and novel bioactive 

secondary metabolites in filamentous fungi. 

FIGURE 5  

Schematic representation of CRISPRa-mediated increases in the production 

of microperfuranone and discovery of the mic cluster product, 

dehydromicroperfuranone. 

Conclusion and Perspectives 
Filamentous fungi, like other eukaryotes, are extensively used in industrial 

and pharmaceutical production owing to their ability to secrete a plethora of 

hydrolytic enzymes, polyunsaturated fatty acids, and, more importantly, 

bioactive small molecules, including antibiotic agents. Furthermore, 

filamentous fungi are the most compatible heterologous hosts for expression
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of compounds such as Penicillium citrinum nuclease P1 in A. niger and fungal

BGCs in Fusarium graminearum , owing to their lack of a requirement of 

intron-removal or codon optimization ( He et al., 2018 ; Chen et al., 2019 ; 

Nielsen et al., 2019 ). With advances in genome sequencing and 

phylogenetic sleuthing, large repertoires of cryptic or silent secondary 

metabolite biosynthetic gene clusters are being uncovered. However, the 

difficulties in genetic manipulation have traditionally impeded secondary 

metabolite molecular studies on filamentous fungi. Therefore, a powerful and

comparatively simple genetic technique for overcoming the obstacle of 

activating these silent secondary metabolite biosynthetic gene clusters is 

urgently needed. CRISPR/Cas9 is based on a conservative immune defense 

mechanism found in bacteria and archaea and has been developed as a 

convenient and flexible technique for genome editing. The CRISPR/Cas9 

genome editing technology has shown great promise in revolutionizing the 

field of fungal research. The CRISPR/Cas9 genome editing system was first 

introduced into Saccharomyces cerevisiae ( DiCarlo et al., 2013 ). 

Subsequently, Liu et al. (2015) applied the CRISPR/Cas9 genome editing 

system to Trichoderma reesei ; Matsu-Ura et al. (2015) and Nodvig et al. 

(2015) applied this system to the model fungal Neurospora crassa and A . 

nidulans , respectively. Since then, the CRISPR/Cas9 genome editing system 

has found wide applications in genetic alteration of many filamentous fungi. 

These studies strongly confirm that the CRISPR/Cas9 gene-editing system 

will undoubtedly bring great possibilities for the discovery of new secondary 

metabolites, on account of its straightforward design, high efficiency, and 

versatility. 
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Compared with genome editing approaches that utilize protein-guided 

programmable nucleases such as ZFN and TALEN-based genome editing 

tools, nucleic acid-guided nucleases such as that primarily utilized in the 

CRISPR/Cas9 system have several advantages for genetic engineering to 

produce secondary metabolites. One advantage is that the CRISPR/Cas9 

system can potentially edit almost all genes containing a PAM in their target 

sequences owing to its simplicity and modularity. Only two components are 

required in this system: a Cas9 endonuclease and sgRNA ( Song et al., 2019

). Indeed, there remain challenges and limitations to utilize this approach, 

such as off-target effects and the need to perform precise editing. As 

research advances, a well-designed gRNA sequence and specific Cas9 

variants can be developed to avoid off-target effects, as can control the 

amount of intracellular Cas9 or enhance Cas9 for higher specificity through 

protein engineering ( Cho et al., 2014 ; Tong et al., 2019 ). For example, Pohl

et al. (2016) adopted a strategy for assembling the Cas9-gRNA complex in 

vitro and co-transformed it with a donor DNA into Penicillium chrysogenum , 

which proved to be effective in reducing off-target effects. With regard to 

precise editing, the biggest hurdle is the native NHEJ that intensely affects 

the efficiency of HDR despite the presence of a homologous template ( Tong 

et al., 2019 ). By employing the inhibitor Scr7, Maruyama et al. (2015) 

successfully targeted the DNA ligase IV responsible for the NHEJ pathway, 

causing suppression of the native NHEJ activity, thus improving the efficiency

of precise genome editing. Additionally, several advanced strategies like 

CRISPRi and FokI-dCas9 have been applied to optimize the Cas9 system to 
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perform more precise gene-editing ( Guilinger et al., 2014 ; Kao and Ng, 

2017 ). 

The potential of fungal biosynthetic capabilities in generating secondary 

metabolites seems virtually unlimited. Researchers have continually 

explored and developed secondary metabolites from filamentous fungi, with 

CRISPR/Cas9 technologies now accelerating progress. The powerful 

advantages of the CRISPR/Cas9 system in studies on filamentous fungal 

secondary metabolites reduce the application of selective markers. Most 

secondary metabolites are regulated by gene clusters in filamentous fungi. 

When three or more genes need to be manipulated at the same time, 

multiple selection markers were required and thus developed for filamentous

fungi. The CRISPR/Cas9 system can edit multiple genes at the same time, 

and it is possible to obtain mutants with multiple site mutations in a single 

transformation, which greatly improves the efficiency of genome editing in 

studies on secondary metabolites of filamentous fungi. However, relatively 

few reports about the “ actual applications” of the CRISPR/Cas9 system in 

the production of secondary metabolites can be obtained. Thus, the 

application is still in its initial stages, as most of the research focus is on 

aspects such as assessing the feasibility of CRISPR/Cas9 systems in fungi (

Tong et al., 2019 ). Apart from CRISPR/Cas9 genome editing strategies, 

alternative methods, such as CRISPRi and CRISPRa, which do not depend on 

DSBs, were rarely reported in filamentous fungi, especially with respect to 

secondary metabolite production. So far, only one application of the CRISPRa

technique being used to increase the secondary metabolite contents of a 

filamentous fungus has been reported ( Roux et al., 2020 ). CRISPRi has not 
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been used in filamentous fungi, but has been successfully applied in other 

fungi ( Roman et al., 2019 ). In addition, prime editing, an emerging and 

precise genome editing method that expands the scope of CRISPR genome 

editing, with few byproducts and without requiring DSBs or donor DNA 

templates, has attracted great attention ( Anzalone et al., 2019 ). 

Consequently, this method has potential value in research on secondary 

metabolites from filamentous fungi. Related technologies and applications of

the CRISPR/Cas9 possess great potential and will play a greater role in the 

discovery of new secondary metabolites and engineering of the strains that 

produce them in the near future. 

In summary, CRISPR/Cas9-based genome editing technology still requires 

development and improvement in genetic modification of secondary 

metabolites in filamentous fungi, and the general scope of applications can 

be expanded further. It is premature to declare that the CRISPR/Cas9 

technique is accelerating the metabolic engineering of filamentous fungi for 

secondary metabolites. However, with the development of full genomes 

available and metabolomics, knowledge of the secondary metabolite 

biosynthetic gene clusters of filamentous fungi together with exploitation of 

CRISPR/Cas9 approaches will help overcome current limitations in increasing 

production of secondary metabolites. Such advances will also promote the 

discovery of new bioactive compounds. 
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