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Introduction 
What Is Stroke 
Stroke is the rapid development of disturbance of cerebral function 

attributed to the interruption of blood supply. Stroke is diagnosed by imaging

evidence of infarct and associated clinical findings. Magnetic resonance 

imaging (MRI) is most sensitive to cerebral infarct using diffusion weighted 

techniques to compare the extent of the ischemic core with the extent of 

perfusion abnormality. Changes in diffusion weighted imaging are apparent 

in the hyperacute setting. Other modalities can diagnose cerebral infarct in 

the acute setting including computed tomographic (CT), CT 

angiogram/perfusion, and diagnostic cerebral angiogram. The two main 

types of stroke are ischemic and hemorrhagic, with incidences of 85 and 

15%, respectively ( 1 ), accounting for 13. 7 million new strokes each year (

2 ). Ischemic stroke is currently the 5th leading cause of mortality in the 

United States, and 9. 5 million first-time cases have been reported globally in

2016 ( 2 – 4 ). More than one-third of stroke-cost is due to lost productivity 

rather than actual treatment, pressing for the development of treatments 

that promote and assist recovery post-ictus ( 5 ). 

Due to the plethora of causes for ischemic stroke, syndrome characterization

occurs roughly by a rule of quarters: 25% cardioembolic, 25% 

thromboembolic, 25% lacunar, and 25% due to other causes ( 6 ). Of note, 

the majority of acute coronary syndromes result from a rupture or erosion of 

an atherosclerotic plaque, followed by in situ formation of a thrombus on the 

plaque, causing arterial obstruction ( 7 ). Often, ischemic stroke occurs from 

embolic arterial occlusion—either cardioembolic, caused by atrial fibrillation 
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or valvular heart disease, or thromboembolic, from atherosclerotic disease in

the extracranial cervical carotid or vertebral arteries ( 1 ). Cerebral blood 

flow through collateral vessels near the embolic arterial occlusion may help 

prevent total ischemia and ameliorate hypoxia-induced damage; however, 

collateral cerebral blood flow is inefficient in maintaining neuronal function 

and viability within the ischemic core ( 6 ). Under anaerobic conditions, 

complex metabolic events result in irreversible damage and neuronal death (

8 ). 

Current Understanding of Stroke 
A foundational understanding of the etiology of stroke is important in the 

development of stroke therapeutics from first principles. In the acute stage 

of oxygen and glucose depletion in the brain, decreased blood flow disrupts 

ionic homeostasis and increases intracellular calcium stress responses. 

Intracellular calcium stress responses cause release of excitatory 

neurotransmitters and induce mitochondrial dysfunction, leading to 

generation of reactive oxygen species (ROS) ( 9 ). In the sub-acute stage, 

hours to days later, apoptotic and inflammatory pathways are then initiated, 

leading to neuronal cell death. Additionally, an increase in ROS and cytokines

may lead to blood brain barrier deterioration, enabling protein and water to 

flood into the extracellular space, leading to vasogenic edema ( 10 ). The 

labyrinth of pathways observed in sub-acute stroke includes apoptosis, 

excitotoxicity, inflammation, and oxidative stress ( Figure 1 ). 

FIGURE 1  
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(A)Diagram for acute and sub-acute targets in stroke.(B)Diagram of ischemia

effects on the neurovascular unit. 

In recent pharmacological developments for stroke, attenuation of 

microcirculatory disturbances has relied on ablation of single factors in 

stroke pathogenesis with interventions including recombinant tissue 

plasminogen activator (rtPA), antioxidants, anti-intercellular adhesion 

molecule-1 (ICAM-1) antibodies, calcium-stabilizing agents, and anti-

excitotoxic agents ( 10 ). Hitherto, rtPA continues to be the only FDA 

approved pharmacological intervention approved for acute ischemic stroke 

despite multiple clinical trials exploring alternative treatments ( 11 ). 

Although FDA approved, rtPA is not without side effects. Even when 

administered as indicated, rtPA increases the incidence of symptomatic 

hemorrhagic transformation (sICH) ( 12 ). Surveillance studies such as the 

Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-

MOST) and Get With the Guidelines-Stroke (GWTG) demonstrated a small but

significant increase in risk for sICH after rtPA administration despite slight 

variance in defining sICH ( 13 , 14 ). 

Large amounts of oxygen and glucose are needed to sustain normal brain 

metabolism. For example, to sustain the propagation of action potentials, 

70% of the ATP supplied to the brain is used by Na+/K+ ATPase ion pumps 

located on the plasma membrane ( 15 ). After global ischemia, the depletion 

of oxygen and glucose results in the depletion of ATP within minutes, causing

membrane depolarization, release of K+ into the extracellular space, entry of

sodium into cells, and an increase in intracellular Calcium; if ATP is not 

restored, catabolic enzymes are activated and facilitate the necrosis of cells 
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in the infarct ( 15 ). As necrosis establishes the ischemic core in the 

hypoperfused region, tissue at risk of cell-death around the core may survive

for hours to days and may be salvaged with timely reperfusion and 

pharmacological treatment ( 16 ). The resulting blood brain barrier damage, 

inflammation, and apoptosis all contribute to the poor outcomes in ischemic 

stroke ( 17 – 19 ). Several recent clinical ( Table 1 ) and basic science ( Table

2 ) studies provide a basis for our perspective on the future of stroke 

management. Avoiding the pitfalls of previously failed therapies that we 

discuss extensively below, novel therapies and approaches may change the 

clinical management of stroke patients and provide a foundation for 

understanding and treatment of similar pathologies. 

TABLE 1  

Human studies. 

TABLE 2  

Animal studies. 

Reasons for Failed Stroke Treatments 
Scientific advances have birthed a plethora of neuroprotectants that were 

expected to have significant clinical efficacy. Specifically, a literature review 

of putative neuroprotectants with properly controlled in vivo and in vitro 

experiments using functional or histological endpoints and showing 

improvement in focal models, reported that 912 drugs (and well over 1, 000 

to date) have failed to achieve clinical success ( 33 ). One hypothesis for the 
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failed translational success was suboptimal adherence to the Stroke Therapy 

Academic Industry Roundtable (STAIR) criteria, and subsequent studies will 

require improved rigor and analysis of animal data to ensure translational 

efficacy ( 33 ). 

In the STAIR IX, expert opinions prioritized three main goals; one, given the 

development of endovascular therapy in treating acute stroke, current 

efforts have focused on enhancing access, procedural, and periprocedural 

aspects of this therapy; second, endovascular therapy remains underutilized 

because the lack of ubiquitous vascular imaging (CT angiography and 

magnetic resonance angiography) and inefficient triage of patients needed 

to facilitate treatment within the recommended window of intervention; and 

third, adjunct therapies, e. g., collateral flow stimulants, NA-1, Uric acid, 

Hypothermia, and Activated protein C, in combination with endovascular 

therapy may enhance the effect of reperfusion ( 34 ). 

The consensus of STAIR X is that neuroprotective therapies for ischemic 

stroke have and continue to fail in clinical trials due to the complexity of 

stroke. First, stroke affects all the cells downstream to the occlusion, so a 

therapy targeting the neurovascular unit (Brain Cytoprotection) either by 

pleiotropic effects or improved reperfusion to the infarct core via collateral 

flow may be a better option compared to a single target approach that has 

been the primary focus of basic science research. Second, many of the failed

clinical trials were designed as monotherapies instead of adjunctive 

therapies, which may be advantageously paired (pre or post) with current 

reperfusion approaches such as alteplase and thrombectomy devices. Third, 

failed monotherapeutic drugs should be reconsidered in adjunct to 
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thrombectomy if they have shown significant improvement of outcomes in 

animal stroke models and demonstrated safety in phase II or III clinical trials 

( 35 ). 

Another possible factor in limited translational success might be failure of 

animal models to adequately represent the diversity of patient populations. 

Due to the small window for reperfusion, a majority of patients do not 

receive reperfusion. Although estimates vary and rates of 

thrombectomy/embolectomy are increasing over time, recanalization rates in

patients receiving either medical or surgical intervention for large vessel 

occlusions range from 11 to 40% ( 36 – 38 ). Roughly 50% of patients either 

do not receive stroke intervention or fail to recanalize with therapy ( 39 ). 

Most animal models in stroke are reperfusion models, and the drugs 

developed in these models depend on the direct interaction of the drug in 

the infarct and penumbra zone. Shifting research to a permanent model of 

occlusion or developing ways to widen the reperfusion window (> 24 h) 

would increase the chance of efficacy of new drugs and past drugs from 

bench to bedside. 

A post-hoc subgroup analysis of the ESCAPE-NA1 trial demonstrated 

significantly improved outcomes in patients who received neuroprotectant 

nerinetide in combination with mechanical thrombectomy but without usual 

care alteplase ( 26 ). A drug-drug interaction of nerinetide and alteplase may

have confounded or masked a neuroprotectant effect in the ESCAPE-NA1 trial

( 26 ). Aside from the ESCAPE-NA1 trial being the first large scale application 

of a neuroprotectant in the context of human ischemia-reperfusion, the study

authors also propose that the study benefited from its design which closely 
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paralleled the design and therapeutic timeline of preclinical animal studies (

26 , 40 , 41 ). This logic can be applied in planning both preclinical and 

clinical studies. As reasonable, human trials should be designed to parallel 

the design of preclinical trials, and preclinical trials will ideally anticipate the 

eventual design of human trials. Failing to do so has likely contributed 

significantly to the dearth of successful neurotherapeutic trials. Other 

meaningful points of failure for past clinical trials include sex balancing, 

standardized criteria for image-based selection of patients ( 42 – 44 ), and 

variability in treatment protocol speed, especially in the context of poor 

collateral circulation ( 45 – 51 ). 

The ESCAPE-NA1 trial failed to achieve significance in its primary outcome 

for the overall study population most likely due to proteolysis of nerinetide 

by the plasmin generated by alteplase. Future studies of neuroprotectants in 

human ischemia-reperfusion should be carefully evaluated for potential drug-

drug interactions, and trials should be cognizant of this finding when 

selecting the optimal therapies to pair with improved mechanical/aspiration 

reperfusion therapies. In the context of patients also receiving alteplase, 

special care should be taken to ensure neuroprotectants are resilient against

the enzymatic activity of activated plasmin ( 26 ). 

Stroke Pathophysiology: in Brief 
Cell-Death 
With the loss of oxygen and glucose, a hypoxic state is created in the acute 

stage of cerebral infarction. If recanalization occurs, it may cause further 

stress on the brain, triggering neuronal cell apoptosis and loss of biological 

function (known as reperfusion injury) ( 52 ). A major contributor to outcome 
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after stroke is the survival of neurons ( 53 ). Thus, a primary therapeutic 

target for the treatment of stroke has been protection of neurons ( 53 , 54 ). 

In ischemic stroke, cell-death may occur via necrosis, which results from 

osmotic homeostatic imbalance and subsequent rupture of the plasma 

membrane (occurring within the first hours), or apoptosis, which occurs in a 

controlled manner through intrinsic and extrinsic pathways (occurring over 

several hours or days) ( 55 ). With necrosis occurring immediately after 

ischemic injury, apoptosis has been the focus of basic science research in 

efforts to prevent the recruitment of at-risk tissue, known as the penumbra, 

to the ischemic core. Of interest, literature has reported the activation of 

extrinsic and intrinsic pathways of caspase-mediated cell death in several 

forms of transient middle cerebral artery occlusion (MCAO) in adult rats ( 56

). Stress-induced signaling events cause damage to DNA, cellular structures, 

and organelles—including cytoskeleton, mitotic microtubules, mitochondria, 

golgi, and sarcoplasmic reticulum—and leads to apoptosis ( 57 ). 

Intrinsic pathways are activated when mitochondria are damaged, causing 

membrane depolarization and permeabilization, and subsequently releasing 

several proapoptotic factors from the mitochondrial space ( 58 ). 

Cyotochrome C is released and binds to cytosolic apaf-1 and procaspase 9 to

form the apoptosome, resulting in the autoproteolytic activation of caspase 9

( 57 ). Next, caspase 9 cleaves downstream effector caspases 3, 6, and 7, 

phenotypic markers of apoptosis ( 59 , 60 ). In animal models of stroke, 

cleaved-caspase-3 is upregulated following stroke, and intervention through 

inhibition of caspase-3 reduces infarct size following transient MCAO [( 56 ); 

Figure 1 ]. Thus, one reasonable approach to stroke intervention is to 
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evaluate the efficacy of caspase-mediated cell death to provide translational 

therapeutic benefits following ischemic stroke. 

In spontaneously hypertensive rats and aged female mice, 3K3A-APC, an 

altered version of activated protein c (APC) protease (3 sequential lysine 

residues replaced with 3 alanine residues) that has <10% of APC's 

anticoagulant activity, reduced infarct volume and improved behavior ( 29 ). 

Literature has shown that APC and 3K3A-APC activate their receptor, PAR1, 

expressed on brain endothelial cells, neurons and microglia, and promote 

neuronal survival via inhibition of downstream intrinsic and extrinsic 

apoptotic pathways ( 50 ). In a randomized, controlled, blinded phase II trial 

on the maximally tolerated dose (540 μg/kg) of 3K3A-APC in ischemic stroke 

patients (The RHAPSODY Trial), 3K3A-APC in addition to reperfusion (by tPA 

and/or mechanical thrombectomy) reduced intracranial hemorrhage rates 

(86–67%) and total hemorrhage volume (2. 1 ± 5. 8 to 0. 8 ± 2. 1 mL) 

compared to the placebo group; no difference in infarct volume was 

observed ( 21 ). Taken together, targeting the activation of cell-survival 

pathways, and thereby preventing the activation of apoptotic pathways, has 

been shown to improve outcomes following ischemic stroke. 

Targeting cell-survival pathways, metformin treatment in 40 newly 

diagnosed acute stroke patients with type 2 diabetes mellitus resulted in 

improved neurological function and reduced oxidative stress (increasing the 

expression of glutathione peroxidase and superoxide dismutase) ( 20 ). To 

elucidate metformin's potential molecular mechanism in these patients, 

Zhao et al. treated oxygen-glucose deprived fetal rat hippocampal neurons 

with metformin and observed a reduction in the apoptotic rate via activation 
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of the AMPK/pAMPK/mTOR/BAX/Bcl-2 pathway ( 20 ); many other basic 

science studies have also reported metformin treatment pre ( 61 , 62 ) and 

post ( 63 , 64 ) infarction to reduce infarct volume, neuronal apoptosis, and 

neurological deficits via pathways independent of its euglycemic effects. 

Inflammation 
Secondary to necrosis/apoptosis, neuroinflammation occurs after cytokines 

are released by immune and CNS-resident cells (microglia, astrocytes, and 

neurons) ( 65 ). Clinically, cerebral edema resulting from inflammation is 

diagnosed with a non-contrast CT and includes symptoms such as changes in

mental state and loss of consciousness, peaking at 72–96 h after stroke ( 66

). Initially, ischemia activates microglia—resident immune cells that function 

as sensors and effectors—and then increases the infiltration of dendritic 

cells, macrophages, and lymphocytes ( 67 ). Inflammation may cause 

secondary damage to the initial lesion volume, e. g., increase in infarct 

growth and reperfusion injury, and although corticosteroids remain 

controversial, mannitol may be used as a treatment ( 66 ). Paradoxically, 

recanalization may increase infarct size and disseminate injury, an event 

known as ischemia-reperfusion injury ( 68 – 70 ). Although the mechanism of 

reperfusion injury remains incompletely characterized, apoptosis and 

necrosis activation of the inflammatory system have been implicated in 

ischemia-reperfusion injury ( 71 ). Therefore, inflammation must be 

monitored and accounted for in recanalized and non-recanalized patients. 

To date, inflammatory treatments are targeting immunosuppression via 

fingolimod (pilot clinical trials) and inhibition of early platelet tethering 

and/or activation via glycoproteins. In a pilot trial, treatment with fingolimod 
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(FTY720), an immunosuppressive drug used in multiple sclerosis that inhibits

T cell activation via downregulation of the sphingosine 1 phosphate receptor,

reduced infarct volumes and increased neurological outcomes compared to 

non-treated patients ( 72 ). In addition, T cell synergistic interactions with 

platelets are significant in ischemic-reperfusion injuries. For example, 

glycoprotein receptors expressed on platelets may bind to von Willebrand 

factor (VWF), facilitating adhesion/tethering to injured vessels ( 73 ). Once 

activated, glycoprotein receptors initiate procoagulant and pro-inflammatory 

pathways ( 73 ). In mouse models, the inhibition of the VWF-binding site on 

the glycoprotein IB-IX-V complex prevented the adhesion/tethering of 

platelets to damaged endothelial cells and reduced ischemic-reperfusion 

injury after middle cerebral artery reperfusion ( 50 , 74 ). However, other 

reports have shown that the inhibition of platelet glycoproteins, such as 

IIb/IIIa, did not improve outcome compared to controls but activated pro-

inflammatory pathways, suggesting a complex thrombo-inflammatory 

relationship in ischemic injury ( 50 , 75 ). In a randomized, open-label, 

blinded endpoint clinical trial on patients with internal carotid artery or 

middle cerebral artery occlusions, acute combinational treatment (<6 h from

infarct onset) with fingolimod and alteplase (manufactured tPA) reduced 

infarct volume and lymphocyte counts and improved neurological function at

3-months compared to alteplase treated patients ( 25 ). Thus, fingolimod 

enhanced the efficacy of alteplase administration in acute ischemic stroke 

patients. Given the heterogeneity of pathways involved in infarct growth and

reperfusion injury, further research is needed to better understand pathway 

intersections to increase the efficacy of future treatments. 
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Disruption of the Neurovascular Unit 
Blood vessels carry blood from the heart to the tissue and are composed of 

arteries and arterioles (carry blood to tissue), the capillary bed (facilitate gas

and nutrient exchange), and venules and veins (drain blood from tissue to 

the heart) ( 76 ). The blood-brain barrier (BBB) is the microvasculature 

barrier that regulates movement of molecules, ions, and cells into and from 

the central nervous system. The barrier is composed of two main cell types: 

endothelial cells that form the cell wall, and mural cells that sit on the 

abluminal surface of the endothelial layer ( 77 ). In acute ischemic stroke, 

BBB degeneration results from the disruption of tight junctions, vessel 

regression, brain hypoperfusion, and inflammatory responses. 

BBB degeneration leads to pathological processes such as hemorrhagic 

transformation and/or edema, both of which exacerbate brain injury ( 78 ). 

MRI and CT imaging may be used to evaluate BBB disruption by measuring 

the extravasation of intravenously administered contrast material, and this 

dynamic contrast-enhanced MRI or CT may be combined with a 

pharmacokinetic model to quantify and spatially map BBB disruption ( 79 ). 

Assessment of BBB disruption may be deployed as a prognostic tool to 

predict risk of hemorrhagic transformation. To date, many etiological 

pathways have been suggested in ischemia induced BBB disruption, but 

additional research is needed to understand the exact molecular processes. 

Ischemic insult may cause an increase in the swelling of the brain due to an 

influx of water content, a condition known as cerebral edema. The increased 

cerebral edema may lead to increased intracranial pressure, decreased 

cerebral blood flow, and even death through herniation ( 80 ). Comparing the
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types of edema, cytotoxic edema is apparent on diffusion weighted imaging, 

whereas vasogenic edema can contribute to significant mass effect, 

necessitating decompression ( 81 ). Cytotoxic edema occurs in up to 10% of 

patients with large infarcts with reported mortality rates of up to 80% ( 82 ). 

To date, there are two clinical approaches used to reduce cytotoxic edema: 

intravascular use of hyperosmolar solutions (such as Mannitol or hypertonic 

saline) and decompressive craniectomy. In MCA occlusion, cytotoxic edema 

can start within 30 min and even persist for up to 24 h after reperfusion. 

Specifically, given that astrocytes are involved in the clearance of K + and 

glutamate, and that astrocytic but not neuronal Na-K-Cl co-transporter is 

upregulated after ischemia, astrocytes are more susceptible to water inflow 

(swelling) than neurons ( 83 , 84 ). When the plasma membrane 

channels/pumps can no longer maintain cellular homeostasis, ischemic 

conditions activate oncosis pathways—a cellular death process that leads to 

necrosis with karyolysis ( 85 , 86 ). In gray matter, ischemia results in the 

failure of energy dependent sodium/potassium membrane pumps and in the 

accumulation of intracellular Na + , thereby drawing chloride and water along

their osmotic gradients, and resulting in cellular swelling ( 81 ). As 

intracellular fluid volumes increase, extracellular space decreases 

manifesting radiographically as restricted diffusion on MRI, demonstrating 

hyperintense signal on diffusion weighted imaging (DWI) and hypointense 

signal on ADC sequences ( 87 ). 

The neurovascular unit compromises vascular cells (endothelial cells, mural 

cells such as pericytes of capillaries, venules, and precapillary arterioles), 

vascular smooth muscle cells, glial cells (astrocytes, microglia, and 
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oligodendrocytes), and neurons ( 88 ). The prototypical function of the 

neurovascular unit is the coupling between neural activity and CBF. 

However, in ischemic stroke, BBB permeability increases due to the 

disruption of tight junctions via protein modification, translocation, and 

degradation, and the neurovascular unit is compromised as irreversible 

damage ensues ( 89 ). In detail, post-translational modification of tight 

junctions in response to ischemia may activate vascular endothelial growth 

factor, Rho/ROCK, and cyclic AMP/PKA, causing phosphorylation of tight 

junction proteins (occludin, claudin-5, and ZO-1) and thus increasing BBB 

permeability ( 89 ). Studies have predominantly focused on modulating the 

phosphorylation of tight junction proteins, but these proteins may also be 

regulated via methylation, glycosylation, acetylation, and/or palmitoylation, 

processes that could all play a role in BBB disruption ( 90 ). Furthermore, 

literature has shown that ischemia can activate PAR1 receptors, activating 

PKC-Akt and PKC-ERK1/2 pathways, and thereby increasing the release of 

matrix metalloproteinase-9 (MMP-9); MMP-9 degrades tight junction proteins 

such as occludin and claudin-5 ( 91 ). During ischemia, as ATP supplies are 

depleted and cellular stress increases, many of the cells in the neurovascular

unit become compromised and die. For instance, endothelial cells have been 

reported to die acutely, sub-acutely, and chronically after infarct onset via 

activation of various pathways, e. g., lysosome-dependent, necroptosis, 

autophagy, and apoptosis, all of which may be potential targets for 

treatment ( 92 ). Along these lines, APC analogs, such as 3K3A-APC, have 

been reported to inhibit endothelial apoptosis through PAR1 and PAR3 

receptors, stabilizing the endothelial cytoskeleton, and preserving the BBB (

50 , 93 – 95 ). 
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Therapeutic Strategies 
Neuroprotection and Recanalization: Complementary Targets 
The proximal aim of stroke therapy is to restore blood flow to the area of the 

infarction to reverse and minimize damage from oxygen and nutrient 

deprivation ( 96 ). In the acute phase, patients are given IV rtPA therapy or 

screened for mechanical thrombectomy. Research has established an 

extended therapeutic window in patients who meet standard clinical criteria 

and who have perfusion imaging evidence of salvageable ischemic 

penumbra 4. 5–9 h after onset (or within 9 h of the midpoint of sleep in those

with stroke recognized upon awakening) ( 97 , 98 ). Patients with unknown 

onset stroke also benefit from thrombolysis if MRI demonstrates a diffusion 

lesion without changes on the FLAIR sequence which indicates that onset is 

likely to have been within the last 4. 5 h ( 99 ). Further research is 

accumulating to extend the therapeutic window in patients who meet certain

clinical and imaging criteria. Patients with sufficient penumbra beyond the 

initial ictus who present outside the traditional therapeutic window can still 

benefit from delayed treatment ( 24 , 100 , 101 ). 

A secondary and complementary aim of stroke therapy is to use 

pharmacological agents to attenuate mechanistically deleterious stroke 

pathways that are activated by ischemia and reperfusion ( 96 ). Although 

mechanical and pharmacological recanalization resolve the proximal cause 

of brain injury, they also directly increase risk of hemorrhagic 

transformation, especially rtPA. Restoration of blood flow is accompanied by 

an increase in circulating inflammatory cells. Furthermore, full recanalization

is often impossible due to surgical limitations or limited rtPA and 
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plasminogen contact with the clot surface (<1% chance of recanalization 

when the clot exceeds 8 mm) ( 96 ); thus, to increase translational success 

of rtPA, endovascular therapy, and neuroprotective agents, a synergistic 

cocktail is most promising to overcome the barriers to effective treatment. 

Current evidence supports endovascular thrombectomy in patients 

appropriately selected with advanced clinical image, including patients who 

have already received rtPA for thrombolysis ( 100 , 101 ). Patients are 

receiving intervention for stroke more frequently and longer after the onset 

of stroke ( 69 , 97 – 99 , 102 ), often beyond 6-h from onset, opening a new 

population of patients who will likely benefit from careful application of 

neuroprotective agents to target cell death, angiogenesis, and neurogenesis 

to reverse deleterious consequences in the penumbra ( Figure 2 ). The 

ESCAPE-NA1 trial of nerinetide is the first large trial of any neuroprotective 

agent in the setting of human ischemia-reperfusion ( 26 ), emphasizing that 

although the field of neuronal, endothelial, and glial protective therapies has 

seen numerous large trials, the application of therapies in the context of 

newly developed reperfusion strategies is still in its infancy. 

FIGURE 2  

Potential explanations for poor clinical outcomes with rTPA alone and the 

beneficial properties of adding a synergistic cocktail for the treatment in 

stroke. *Imaging selection may allow later treatment. 

Uric Acid is a product of the catabolism of purine nucleotides and contributes

up to 60% of the plasma antioxidant activity: scavenging hydroxyl radicals, 
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superoxide anions, hydrogen peroxide, and peroxynitrite ( 103 ). In MCAO 

mouse models, uric acid treatment reduced infarct volume, ROS production, 

and neurological deficits ( 104 , 105 ). In addition to antioxidant activity, 

studies suggest that the therapeutic potential of uric acid is predominately 

facilitated via effects on the vasculature. For example, in a rat MCAO model, 

uric acid treatment reduced MCA wall thickening and increased lumen 

expansion ( 106 ). Mechanistically, uric acid treatment increases the 

expression Kruppel-like factor 2 and reduces the expression of VEGF-A, 

thereby maintaining BBB integrity ( 103 ). In the URICO-ICTUS trial, a 

multicenter, randomized, double blind, phase 2b/3 trial, patients that 

received uric acid in combination with alteplase (<4. 5 h) did not improve 

outcomes at 90 days, but in a sensitivity analyses, a borderline significance 

was seen in patients with uric acid treatment who experienced an ordinal 

shift in mRS, decreasing their residual disability by a median of 1 point on 

the mRS compared to the placebo group ( 107 ). Moreover, in a URICO-ICTUS

trial subgroup analysis (45 out of 411 patients), uric acid in combination with

intravenous thrombolysis (<4. 5 h) followed by thrombectomy ( N = 24) 

within 8 h after stroke improved functional outcomes compared to the 

placebo group ( N = 21) ( 27 ). Taken together, therapies targeting BBB 

disruption may provide added protection in the mitigation of 

ischemia/reperfusion injury. 

Recent developments in gene therapy such as RNA interference (RNAi), 

which are used as a natural defense against exogenous genes, can bind to 

specific mRNA to interfere with expression, thereby reducing the expression 

of upstream genes ( 108 ). Even though no RNAi treatment is FDA approved 
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for stroke, animal studies have shown efficacy in siRNA treatment in brain 

hemorrhage, brain ischemia, and traumatic brain injury models ( 109 ). 

Specifically, recent in vivo studies have reported improved outcomes 

following ischemic stroke via inhibition of the following proteins involved in 

apoptosis, coagulation cascade, hypoxia induced cascade, and 

neuroinflammation: Caspase-3 ( 110 ), Beclin1 ( 111 ), Ask1 ( 112 ), PAR1 (

113 ), HIF1alpha ( 114 ), GPR17 ( 115 ), and HMGB1 ( 116 ). Thus, siRNA can 

be applied to many pathophysiological pathways and may prove versatile in 

treating ischemic stroke. However, limitations persist in clinical delivery 

because the BBB excludes lipid-insoluble compounds and macromolecules (

109 ). 

Another approach to stroke treatment includes stem cell therapies in the 

subacute or chronic stages that target inflammation, neural plasticity, 

neovascularization, and growth factors in response to ischemic injury. In a 

single-arm, phase I clinical trial, intravenous administration of autologous 

bone marrow mononuclear cells (10 million cells per kilogram) within 24–72 

h of stroke onset resulted in a reduction of 1 point in median day-90 mRS 

compared to the non-treated control group, wherein no severe adverse 

events were observed ( 117 ). In a phase 2 randomized trial (RECOVER-

Stroke), internal carotid artery infusion of autologous bone marrow-derived 

ALD-401 cells 2-days following a bone marrow harvest at 11–17 days post-

stroke resulted in no detectable improvement in mRS, Barthel Index, NIHSS, 

and EZ-5D scores ( N = 48) ( 118 ). 

In an open-label, single-arm, multicenter study (PISCES-2) investigating 

neurological function following intra-arterial injection of CTX0E03 cells 
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(human neural stem cell line) 2–13 months after stroke, one of twenty-three 

and three of twenty-three subjects demonstrated improved motor function at

3 and 6–12 months, respectively, while no deleterious outcomes occurred 

related to the stem-cell therapy ( 31 ). In a Phase I/II study, intravenous 

allogeneic mesenchymal stem cells were administered at an average of 4. 2 

± 4. 6 years following stroke ( N = 36). Patients enrolled in the trial 

demonstrated improved behavioral outcomes over the 12-months of follow-

up, e. g., Barthel Index scores improved from a baseline of 11–27% at 6-

months and to 35% at 12-months ( P < 0. 002) ( 30 ). Taken together, stem 

cell therapies are feasible and merit further investigation in future 

randomized, controlled trials for both subacute and chronic stroke patients. 

Opportunities for Advancement of the Field 
In 2015, several landmark clinical trials comparing the efficacy 

pharmacological and mechanical thrombectomy for treatment of large vessel

ischemic stroke were published ( 50 ). These studies support endovascular 

thrombectomy as the standard of care for large vessel stroke meeting 

clinical and imaging criteria with or without rtPA ( 119 – 121 ). Given the 

results of these studies, networks of care will continue optimization to 

maximize the fraction of patients receiving pharmacological thrombolysis, 

and when available, endovascular thrombectomy. Furthermore, recent trials 

have extended the eligible time window for reperfusion to 16 h and beyond 

given appropriate magnetic resonance imaging selection criteria ( 69 , 122 ).

These findings have significant translational relevance to findings in animal 

models of stroke. Neuroprotective treatments with limited efficacy in 

permanent occlusion, but significant improvement in infarction volumes and 
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neurobehavioral outcomes after reperfusion would be strong candidates (

123 ). These neuroprotective agents will likely perform well in combination 

with pharmacological thrombolysis or mechanical thrombectomy. 

Increasingly, more patients will be screened with early magnetic resonance 

imaging to identify patients with adequate collateral blood supply allowing 

for delayed rescue of the penumbra ( 124 ). These patients will be ideal 

candidates for therapies that pair optimally with reperfusion of viable 

parenchyma ( 94 , 125 , 126 ). The beneficial application of neuroprotective 

agents is not strictly limited to patients with excellent collaterals, but rather, 

these patients may more frequently be the target of pharmacological and 

mechanical attempts to rescue the penumbra, and thus are more likely to be

in a situation to receive adjunctive therapies. Patients with moderate-to-

large ischemic cores may also benefit from select neuroprotective agents 

despite limited bioavailability within the ischemic core. Small ischemic cores 

with adequate collateral supply will allow for optimal bioavailability of 

neuroprotectants, but the clinical efficacy of treatments may be small 

compared to reperfusion alone secondary to the mild nature of the disease. 

Conversely, moderate-to-large infarcts, which are often accompanied by 

poor collateral circulation to the penumbra, may achieve lesser 

bioavailability of neuroprotectants at the target site, but clinically may 

demonstrate improvement due to the greater initial severity of disease. 

Standardized and widespread acceptance of newly developed stent retriever 

and/or direct aspiration catheters from manufacturers will increase the 

fraction of stroke patients achieving timely reperfusion ( 127 – 131 ). 

Although these devices have been utilized at some medical centers for 
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several years, they are still at a relatively nascent stage of development. 

Finesse aspects of device design, including application in combination with 

or without balloon occlusion, are areas of ongoing research ( 132 ). This new,

larger population of patients receiving timely reperfusion is distinct from 

previous experimental populations studied before the onset of skilled neuro-

interventional providers with the latest tool set. These patients form a 

promising cohort for application of new and previously failed therapeutics. 

Building on the foundation of recently established interventional techniques, 

we postulate several unique therapeutic applications that previously would 

not have been feasible. For instance, balloon occlusion techniques, when 

applied in combination with mechanical thrombectomy or direct aspiration, 

may transiently improve local bioavailability of intra-arterial therapies, 

delaying washout and systemic dilution, which may be especially efficacious 

in the context of blood brain barrier and endothelial-directed therapeutics. 

Theoretically, this could allow for much higher efficacy of therapeutics that 

would otherwise be limited in their systemic dosing or decreased in efficacy 

once normal, high-volume arterial perfusion is re-established. Similarly, intra-

arterial administration of therapeutics at the moment of stent retriever 

deployment via a guide-catheter would ensure delivery of protective 

therapeutics to the at-risk vascular territory just before and during the 

moment of reperfusion. 

Given that the DEFUSE ( 69 ) and DAWN ( 102 ) trials have extended 

recanalization in certain patients up to 24 h from infarct, reports are growing

of delayed recanalization (> 24 h) with favorable outcome in a variety of 

stroke subtypes. In MCA occlusions, recanalization at > 24 h ( 22 – 24 , 133 , 
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134 ) and up to 60 days ( 135 ) since last known well has demonstrated 

improved outcomes. In basilar artery occlusions, reperfusion at 36 h ( 136 ), 

50 h ( 137 ), and > 2 days ( 138 ) resulted in fully restored neurologic 

function, complete functional recovery, and 77% mRS of 0–3, respectively. In

internal carotid artery occlusions, recanalization from 1 month up to 27 

months resulted in favorable outcomes, with some patients achieving full 

recovery ( 139 – 142 ). In basic science research, there is a limited number of

studies that have investigated recanalization beyond 24 h. In MCAO rat 

models, investigators have shown delayed recanalization to improve 

neurological function as well as even reduce infarct volume when 

administered at 3-, 7-, and 14-days following stroke onset compared to 

permanent MCAO groups ( 39 , 143 , 144 ). 

Clinical research has established the principle of “ time is brain,” meaning 

that time delay before intervention is related to the loss of brain tissue ( 145

). This principle emphasizes the need for early intervention in stroke, 

especially in patients with poor collateral blood supply. In practice, this 

requires that the planned intervention be feasible and easily deployed in the 

field. Although further research is needed to understand the 

pharmacokinetics and develop optimum dosing schedules, many 

neuroprotective agents would theoretically allow rapid deployment following 

positive findings on computed tomography screening or even administration 

by emergency response personnel in cases of high pre-test probability of 

ischemic stroke. 

The concept of “ time is brain” has been debated, but expert opinion holds 

that “ time is brain” applies most directly to parenchyma lacking sufficient 
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collaterals such that ischemia is primarily a watershed event without 

opportunity for rescue or subsistence level of perfusion supplied by collateral

vessels. In real-world application, collateral circulation varies among 

individuals and directly affects the course of stroke injury ( 146 ). 

Taken together, recent developments provide a wide frontier for 

advancement of the field. Improved imaging technology and interpretation 

provide the opportunity to test adjunctive therapies selected to pair 

optimally with reperfusion or collateral status. The logistics of ensuring 

maximum implementation of new state-of-the-art techniques and 

widespread, high-quality training of interventionalists with the latest 

equipment will be an ongoing opportunity for improvement in overall 

outcomes. Specific devices and techniques will be matched with rationally 

selected adjunctive therapies. The relationship of time and stroke 

intervention will continue to evolve from first responders to delayed 

treatment. 

Limitations and Potential Solutions 
Because ~50% of withheld recanalization therapy is attributed to prehospital

delays ( 147 ), extending the window for reperfusion and increasing efficacy 

of delayed recanalization penumbra need to be the focus of future studies. 

First, given the potential for immediate impact, trials should begin 

incorporating synergistic neuroprotective cocktails in combination with 

reperfusion therapy. Recently, in patients with internal artery or middle 

cerebral artery occlusions, combined treatment, fingolimod (an antagonist to

Sphingosine receptors) and alteplase (manufactured tPA), reduced infarct 

volume and improved reperfusion and outcome compared to the alteplase 
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treated group ( 25 ). Similarly, additional clinical trials are investigating 

neurological outcome in patients with proximal large vessel occlusions that 

undergo mechanical thrombectomies in conjunction with fingolimod ( 148 ). 

Along these lines, treatments targeting apoptosis, inflammation, edema, and

BBB disruption may serve to be advantageous in combination with 

reperfusion. 

The most significant contraindications to delayed recanalization are 

hemorrhagic transformation (HT) and mortality. Molina et al. have reported 

acute recanalization (<6 h) to result in HT in ~20% of patients compared to 

~50% of patients in delayed recanalized groups (<24 h) ( 149 ). Because of 

the potential risks, more research is needed to investigate HT following 

cocktailed treatments targeting BBB integrity or even at reperfusion 

intervention beyond 24 h. In a clinical study evaluating mortality in patients 

> 80 years of age, although not statistically significant due to low power, 

higher numbers of mortality resulted from reperfusion beyond 8 h from 

stroke onset ( P = 0. 055; N = 96) ( 150 ). Small study populations are 

susceptible to the effects of small sample sizes. Thus, additional studies are 

needed with a higher power to avoid the stochastic nature of mortality and 

establish optimal delayed-reperfusion time-points for patients that may 

otherwise have no viable therapeutic options. 

Lack of research on the sequelae of delayed reperfusion is a major barrier 

preventing its application into clinical trials. Although there is a paucity of 

information on delayed reperfusion, some basic science researchers have 

started to investigate novel delayed reperfusion targets. For instance, 

Mcbride et al. have reported that following permanent MCAO, reperfusion at 
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3-days, and even 7-days, resulted in improved functional outcome compared

to non-perfused animals ( 39 ). In summary, studies must continue to 

carefully evaluate delayed reperfusion beyond conventional time-points, as 

well as incorporate effective neuroprotective agents to reduce potential side-

effects. 

Although not exclusively a form of reperfusion injury, HT after reperfusion 

may be a primary representation and manifestation of the molecular 

pathways activated by reoxygenation, exposure to renewed systemic 

pressures, and delivery of pharmaceuticals such as tPA. Studies have tried to

develop imaging criteria to identify high-risk patients. For example, 

Shinoyama et al. have suggested that time to peak (TTP) mapping, a 

perfusion-based imaging technique, on admission may identify stroke 

patients and quantify stroke severity ( 151 ). The severity of hypoperfusion in

stroke correlates with the risk of hemorrhagic transformation ( 152 ). Multiple

additional risk factors and predictors of severity of hemorrhagic 

transformation have been identified ( 153 , 154 ). Not all hemorrhagic 

transformation as seen on imaging has equivalent clinical ramifications. The 

European Cooperative Acute Stroke Study (ECASS II) developed criteria to 

divide hemorrhagic transformation into subtypes, primarily distinguishing 

between hemorrhagic infarct without mass effect and parenchymal 

hematoma with mass effect. Upon admission, perfusion imaging sequences, 

including TTP and mean transit time (MTP), may provide significant 

prognostic information to guide efforts to reduce HT. Also, with 

recanalization beyond 6 h from stroke onset, and using CT perfusion, Renu et

al. reported significant associations between CT perfusion calculated infarct 
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volume, DWI core infarct volume, cerebral blood volume, cerebral blood flow,

clinical outcomes, and rates of hemorrhage ( 155 ). Since BBB disruption 

contributes directly to HT and edema formation, CT contrast material may 

effectively discriminate regions of increased BBB permeability ( 156 ). Taken 

together, more precise prognostic indicators for HT will develop in parallel 

with imaging technology and additional research. Advanced imaging 

techniques show promise in identifying patients with the optimum balance of

therapeutic benefit and risk for complications. 

In the absences of reperfusion, penumbra is dependent on perfusion to the 

penumbra from collateral vessels ( 157 ). Although collateral circulation 

shows promise in sustaining the ischemic penumbra, efficacy of 

leptomeningeal collaterals is variable among stroke patients. Congenital 

differences result in a variety of atypical primary and secondary collaterals 

supplied by the Circle of Willis and leptomeningeal vessels ( 158 , 159 ). 

Collateral status is also largely dependent on the health of cerebral 

vasculature. Degree of atherosclerotic disease and vessel elasticity both 

correlate with the quality of collateral cerebral arteries ( 160 , 161 ). In a 

series of patients evaluated by Sharma et al., collateral vessel status was 

more predictive of outcomes than time from last known well ( 162 ). 

Neuroimaging may therefore be used as a prognostic tool to determine 

adequate leptomeningeal collateralization and select patients eligible for 

delayed recanalization. Theorizing that adequate blood pressure is necessary

for perfusion of collateral vessels, Hillis et al. reported that optimized blood 

pressure management improves collateral blood flow, thereby increasing 

penumbra perfusion and improving functional outcome ( 163 ). Taken 
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together, in addition to focusing on reperfusion therapies, researchers should

continue to develop complementary strategies to identify, improve, and 

leverage collateral vessel status to improve stroke outcomes. 

Approximately 325, 000 ischemic strokes are caused by large vessel 

occlusion annually in the USA, and only ~20% are treated with recanalization

therapy ( 39 ). If the recanalization window is extended, and if recanalization 

efficacy is increased, many of these patients would be eligible for 

intervention. Stroke care of the future will benefit from improvements at 

each major step of care—screening, triage, diagnosis, therapy, 

prognostication, and recovery. Given the rapid progress of non-invasive 

monitoring and improved predictive models of stroke, patients with high-risk 

for stroke will likely benefit from non-invasive at-home monitoring to screen 

for markers of stroke. Alerted by cost effective, non-invasive monitoring, 

emergency medical service (EMS) teams will immediately be dispatched, 

shortening the interval between last known well and initial assessment. If 

stroke symptoms are present, management could be initiated immediately 

through tele-consultation with a neurologist while en route to a dedicated 

stroke center. Although not currently deployed, if technological 

developments continue at pace, screening technologies may be developed 

that increase the ability of EMS providers to differentiate between ischemic 

and hemorrhagic events which would open an early treatment window for 

reperfusion therapy. Regardless of technological developments, upon arrival 

at a stroke center, dedicated teams of clinicians, technologists, radiologists, 

and interventionalists will continue to play a pivotal role in stroke treatment. 

More hospitals will hire and deploy dedicated teams to streamline rapid 
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screening, diagnosis, and treatment of stroke patients. Rapid availability of 

advanced imaging techniques will increase in the future as evidence 

accumulates to support the value advanced imaging techniques in screening

for hemorrhage, evaluating penumbra status, assessing collateral vessel 

grade, and dictating deployment of neuroprotective and reperfusion 

therapies. 

We believe that neuroprotective agents in combination with reperfusion will 

reduce deleterious side-effects associated with ischemia and reperfusion, 

especially when tailored to select patient subgroups. An increasing fraction 

of stroke patients will be treated both within the 6 h window and beyond the 

traditional time window with improved outcomes. Objective evaluation of 

collateral vessel status will extend the window for intervention in some 

patients and will likely improve efficacy of delayed recanalization. In patients

with poor quality collateral circulation, dedicated therapies will be deployed 

to sustain the penumbra until recanalization. 

Concluding Remarks 
The magnitude of stroke incidence justifies further investigation of 

interventions with potential for notable effect sizes ( 164 ). Even small 

improvements in the treatment of ischemic stroke will, nonetheless, have 

profound effects at the level of populations. Balancing the effect size of 

neuroprotective intervention against the absence of observed side-effects in 

animal models, neuroprotective agents are promising for translation and 

have the potential to advance the field of stroke therapy in combination with 

recent advancements in reperfusion therapy. The future of stroke treatment 

lies in expansion of the therapeutic window for recanalization therapy in 
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combination with synergistic cocktails of neuroprotective agents to directly 

interact with the desired tissue in the penumbra to attenuate ischemia-

activated deleterious pathways. New developments in recanalization therapy

in combination with therapeutics developed through carefully paralleled 

animal models will allow for novel, intra-arterial deployment of therapeutic 

agents over a vastly expanded therapeutic time window and with greater 

likelihood success. We highlight the novel confluence of recent 

developments to provide real breakthroughs in stroke therapy. 
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