2

[image: ]


[bookmark: _GoBack][image: ]Are "good” computer viruses still a bad idea? 13782


Are “ Good” Computer Viruses Still a Bad Idea? 
Vesselin Bontchev 
Research Associate 
Virus Test Center 
University of Hamburg 
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany 
[email protected] ] 
During the past six years, computer viruses have caused unaccountable amount of 
damage – mostly due to loss of time and resources. For most users, the term 
“ computer virus” is a synonym of the worst nightmares that can happen on their 
system. Yet some well-known researchers keep insisting that it is possible to 
use the replication mechanism of the viral programs for some useful and 
beneficial purposes. 
This paper is an attempt to summarize why exactly the general public appreciates 
computer viruses as something inherently bad. It is also considering several of 
the proposed models of “ beneficial” viruses and points out the problems in them. 
A set of conditions is listed, which every virus that claims to be beneficial 
must conform to. At last, a realistic model using replication techniques for 
beneficial purposes is proposed and directions are given in which this technique 
can be improved further. 
The paper also demonstrates that the main reason for the conflict between those 
supporting the idea of a “ beneficial virus” and those opposing it, is that the 
two sides are assuming a different definition of what a computer virus is. 
1. What Is a Computer Virus? 
The general public usually associates the term “ computer virus” with a small, 
nasty program, which aims to destroy the information on their machines. As usual, 
the general public’s understanding of the term is incorrect. There are many 
kinds of destructive or otherwise malicious computer programs and computer 
viruses are only one of them. Such programs include backdoors, logic bombs, 
trojan horses and so on [Bontchev94]. Furthermore, many computer viruses are not 
intentionally destructive – they simply display a message, play a tune, or even 
do nothing noticeable at all. The important thing, however, is that even those 
not intentionally destructive viruses are not harmless – they are causing a lot 
of damage in the sense of time, money and resources spent to remove them – 
because they are generally unwanted and the user wishes to get rid of them. 
A much more precise and scientific definition of the term “ computer virus” has 
been proposed by Dr. Fred Cohen in his paper [Cohen84]. This definition is 
mathematical – it defines the computer virus as a sequence of symbols on the 
tape of a Turing Machine. The definition is rather difficult to express exactly 
in a human language, but an approximate interpretation is that a computer virus 
is a “ program that is able to infect other programs by modifying them to include 
a possibly evolved copy of itself”. 
Unfortunately, there are several problems with this definition. One of them is 
that it does not mention the possibility of a virus to infect a program without 
modifying it – by inserting itself in the execution path. Some typical examples 
are the boot sector viruses and the companion viruses [Bontchev94]. However, 
this is a flaw only of the human-language expression of the definition – the 
mathematical expression defines the terms “ program” and “ modify” in a way that 
clearly includes the kinds of viruses mentioned above. 
A second problem with the above definition is its lack of recursiveness. That is, 
it does not specify that after infecting a program, a virus should be able to 
replicate further, using the infected program as a host. 
Another, much more serious problem with Dr. Cohen’s definition is that it is too 
broad to be useful for practical purposes. In fact, his definition classifies as 
“ computer viruses” even such cases as a compiler which is compiling its own 
source, a file manager which is used to copy itself, and even the program 
DISKCOPY when it is on diskette containing the operating system – because it can 
be used to produce an exact copy of the programs on this diskette. 
In order to understand the reason of the above problem, we should pay attention 
to the goal for which Dr. Cohen’s definition has been developed. His goal has 
been to prove several interesting theorems about the computational aspects of 
computer viruses [Cohen89]. In order to do this, he had to develop a 
mathematical (formal) model of the computer virus. For this purpose, one needs a 
mathematical model of the computer. One of the most commonly used models is the 
Turing Machine (TM). Indeed, there are a few others (e. g., the Markoff chains, 
the Post Machine, etc.), but they are not as convenient as the TM and all of 
them are proven to be equivalent to it. 
Unfortunately, in the environment of the TM model, we cannot speak about 
“ programs” which modify “ other programs” – simply because a TM has only one, 
single program – the contents of the tape of that TM. That’s why Cohen’s model 
of a computer virus considers the history of the states of the tape of the TM. 
If a sequence of symbols on this tape appears at a later moment somewhere else 
on the tape, then this sequence of symbols is said to be a computer virus for 
this particular TM. It is important to note that a computer virus should be 
always considered as related to some given computing environment – a particular 
TM. It can be proven ([Cohen89]) that for any particular TM there exists a 
sequences of symbols which is a virus for that particular TM. 
Finally, the technical computer experts usually use definitions for the term 
“ computer virus”, which are less precise than Dr. Cohen’s model, while in the 
same time being much more useful for practical reasons and still being much more 
correct than the general public’s vague understanding of the term. One of the 
best such definitions is ([Seborg]): 
“ We define a computer ‘ virus’ as a self-replicating program that can 
‘ infect’ other programs by modifying 
them or their environment such that a call to an ‘ infected’ program implies 
a call to a possibly evolved, and in 
most cases, functionally similar copy of the ‘ virus’.” 
The important thing to note is that a computer virus is a program that is able 
to replicate by itself. The definition does not specify explicitly that it is a 
malicious program. Also, a program that does not replicate is not a virus, 
regardless of whether it is malicious or not. Therefore the maliciousness is 
neither a necessary, nor a sufficient property for a program to be a computer 
virus. 
Nevertheless, in the past ten years a huge number of intentionally or non 
intentionally destructive computer viruses have caused an unaccountable amount 
of damage – mostly due to loss of time, money, and resources to eradicate them – 
because in all cases they have been unwanted. Some damage has also been caused 
by a direct loss of valuable information due to an intentionally destructive 
payload of some viruses, but this loss is relatively minor when compared to the 
main one. Lastly, a third, indirect kind of damage is caused to the society – 
many users are forced to spend money on buying and time on installing and using 
several kinds of anti-virus protection. 
Does all this mean that computer viruses can be only harmful? Intuitively, 
computer viruses are just a kind of technology. As with any other kind of 
technology, they are ethically neutral – they are neither “ bad” nor “ good” – it 
is the purposes that people use them for that can be “ bad” or “ good”. So far 
they have been used mostly for bad purposes. It is therefore natural to ask the 
question whether it is possible to use this kind of technology for good purposes. 
Indeed, several people have asked this question – with Dr. Cohen being one of 
the most active proponents of the idea [Cohen91]. Some less qualified people 
have attempted even to implement the idea, but have failed miserably (see 
section 3). It is natural to ask – why? Let’s consider the reasons why the idea 
of a “ good” virus is usually rejected by the general public. In order to do this, 
we shall consider why people think that a computer virus is always harmful and 
cannot be used for beneficial purposes. 
2. Why Are Computer Viruses Perceived as Harmful? 
About a year ago, we asked the participants of the electronic forum Virus- 
L/comp. virus, which is dedicated to discussions about computer viruses, to list 
all reasons they could think about why do they perceive the idea of a 
“ beneficial” virus as a bad one. What follows is a systematized and generalized 
list of those reasons. 
2. 1. Technical Reasons 
This section lists the arguments against the “ beneficial virus” idea, which have 
a technical character. They are usually the most objective ones. 
2. 1. 1. Lack of Control 
Once released, the person who has released a computer virus has no control on 
how this virus will spread. It jumps from machine to machine, using the 
unpredictable patterns of software sharing among the users. Clearly, it can 
easily reach systems on which it is not wanted or on which it would be 
incompatible with the environment and would cause unintentional damage. It is 
not possible for the virus writer to predict on which systems the virus will run 
and therefore it is impossible to test the virus on all those systems for 
compatibility. Furthermore, during its spread, a computer virus could reach even 
a system that had not existed when that virus has been created – and therefore 
it had been impossible to test the virus for compatibility with this system. 
The above is not always true – that is, it is possible to test the virus for 
compatibility on a reasonably large number of systems that are supposed to run 
it. However, it is the damaging potential of a program that is spreading out of 
control which is scaring the users. 
2. 1. 2. Recognition Difficulty 
Currently a lot of computer viruses already exist, which are either 
intentionally destructive or otherwise harmful. There are a lot of anti-virus 
programs designed to detect and stop them. All those harmful viruses are not 
going to disappear overnight. Therefore, if one develops a class of beneficial 
viruses and people actually begin to use them, then the anti-virus programs will 
have to be able to make the difference between the “ good” and the “ bad” viruses 
– in order to let the former in and keep the latter out. 
Unfortunately, in general it is theoretically impossible even to distinguish 
between a virus and a non-viral program ([Cohen89]). There is no reason to think 
that distinguishing between “ good” and “ bad” viruses will be much easier. While 
it might be possible to distinguish between them using virus-specific anti-virus 
software (e. g., scanners), we should not forget that many people are relying on 
generic anti-virus defenses, for instance based on integrity checking. Such 
systems are designed to detect modifications, not specific viruses, and 
therefore will be triggered by the “ beneficial” virus too, thus causing an 
unwanted alert. Experience shows that the cost of such false positives is the 
same as of a real infection with a malicious virus – because the users waste a 
lot of time and resources looking for a non-existing problem. 
2. 1. 3. Resource Wasting 
A computer virus would eat up disk space, CPU time, and memory resources during 
its replication. A computer virus is a self-replicating resource eater. One 
typical example is the Internet Worm, accidentally released by a Carnegie-Mellon 
student. It was not designed to be intentionally destructive, but in the process 
of its replication, the multiple copies of it used so much resources, that they 
practically brought down a large portion of the Internet. 
Even when the computer virus uses a limited amount of resources, it is 
considered as a bad thing by the owner of the machine on which the virus is 
doing it, if it happens without authorization. 
2. 1. 4. Bug Containment 
A computer virus can easily escape the controlled environment and this makes it 
very difficult to test such programs properly. And indeed – experience shows 
that almost all computer viruses released so far suffer from significant bugs, 
which would either prevent them from working in some environments, or even cause 
unintentional damage in those environments. 
Of course, any program can (and usually does) contain bugs. This is especially 
true for the large and complex software systems. However, a computer virus is 
not just a normal buggy program. It is a self-spreading buggy program, which is 
out of control. Even if the author of the virus discovers the bug at a later 
time, there is the almost untreatable problem of revoking all existing copies of 
the virus and replacing them with fixed new versions. 
2. 1. 5. Compatibility Problems 
A computer virus that can attach itself to any of the user’s programs would 
disable the several programs on the market that perform a checksum on themselves 
at runtime and refuse to run if modified. In a sense, the virus will perform a 
denial-of-service attack and thus cause damage. 
Another problem arises from some attempts to solve the “ lack of control” problem 
by creating a virus that asks for permission before infecting. Unfortunately, 
this causes an interruption of the task being currently executed until the user 
provides the proper response. Besides of being annoying for the user, it could 
be sometimes even dangerous. Consider the following example. 
It is possible that a computer is used to control some kind of life-critical 
equipment in a hospital. Suppose that such a computer gets infected by a 
“ beneficial” computer virus, which asks for permission before infecting any 
particular program. Then it is perfectly possible that a situation arises, when 
a particular program has to be executed for the first time after the virus has 
appeared on the computer, and that this program has to urgently perform some 
task which is critical for the life of a patient. If at that time the virus 
interrupts the process with the request for permission to infect this program, 
then the caused delay (especially if there is no operator around to authorize or 
deny the request) could easily result in the death of the patient. 
2. 1. 6. Effectiveness 
It is argued that any task that could be performed by a “ beneficial” virus could 
also be performed by a non-replicating program. Since there are some risks 
following from the capability of self-replication, it would be therefore much 
better if a non-replicating program is used, instead of a computer virus. 
2. 2. Ethical and Legal Reasons 
The following section lists the arguments against the “ beneficial virus” idea, 
which are of ethical or legal kind. Since neither ethics, nor the legal systems 
are universal among the human society, it is likely that those arguments will 
have different strength in the different countries. Nevertheless, they have to 
be taken into account. 
2. 2. 1. Unauthorized Data Modification 
It is usually considered unethical to modify other people’s data without their 
authorization. In many countries this is also illegal. Therefore, a virus which 
performs such actions will be considered unethical and/or illegal, regardless of 
any positive outcome it could bring to the infected machines. Sometimes this 
problem is perceived by the users as “ the virus writer claims to know better 
than me what software should I run on my machine”. 
2. 2. 2. Copyright and Ownership Problems 
In many cases, modifying a particular program could mean that copyright, 
ownership, or at least technical support rights for this program are voided. 
We have witnessed such an example at the VTC-Hamburg. One of the users who 
called us for help with a computer virus was a sight-impaired lawyer, who was 
using special Windows software to display the documents he was working on with a 
large font on the screen – so that he could read them. His system was infected 
by a relatively non-damaging virus. However, when the producer of the software 
learned that the machine was infected, they refused any technical support to the 
user, until the infection was removed and their software – installed from clean 
originals. 
2. 2. 3. Possible Misuse 
An attacker could use a “ good” virus as a means of transportation to penetrate a 
system. For instance, a person with malicious intent could get a copy of a 
“ good” virus and modify it to include something malicious. Admittedly, an 
attacker could trojanize any program, but a “ good” virus will provide the 
attacker with means to transport his malicious code to a virtually unlimited 
population of computer systems. The potential to be easily modified to carry 
malicious code is one of the things that makes a virus “ bad”. 
2. 2. 4. Responsibility 
Declaring some viruses as “ good” and “ beneficial” would just provide an excuse 
to the crowd of irresponsible virus writers to condone their activities and to 
claim that they are actually doing some kind of “ research”. In fact, this is 
already happening – the people mentioned above are often quoting Dr. Fred 
Cohen’s ideas for beneficial viruses as an excuse of what they are doing – often 
without even bothering to understand what Dr. Cohen is talking about. 
2. 3. Psychological Reasons 
The arguments listed in this section are of psychological kind. They are usually 
a result of some kind of misunderstanding and should be considered an obstacle 
that has to be “ worked around”. 
2. 3. 1. Trust Problems 
The users like to think that they have full control on what is happening in 
their machine. The computer is a very sophisticated device. Most computer users 
do not understand very well how it works and what is happening inside. The lack 
of knowledge and uncertainty creates fear. Only the feeling that the reactions 
of the machine will be always known, controlled, and predictable could help the 
users to overcome this fear. 
However, a computer virus steals the control of the computer from the user. The 
virus activity ruins the trust that the user has in his/her machine, because it 
causes the user to lose his/her belief that s/he can control this machine. This 
may be a source of permanent frustrations. 
2. 3. 2. Negative Common Meaning 
For most people, the word “ computer virus” is already loaded with negative 
meaning. The media has already widely established the belief that a computer 
virus is a synonym for a malicious program. In fact, many people call “ viruses” 
many malicious programs that are unable to replicate – like trojan horses, or 
even bugs in perfectly legitimate software. People will never accept a program 
that is labelled as a computer virus, even if it claims to do something useful. 
3. Some Bad Examples of “ Beneficial” Viruses 
Regardless of all the objections listed in the previous section, several people 
have asked themselves the question whether a computer virus could be used for 
something useful, instead of only for destructive purposes. 
And several people have tried to positively answer this question. Some of them 
have even implemented their ideas in practice and have been experimenting with 
them in the real world – unfortunately, without success. In this section we 
shall present some of the unsuccessful attempts to create a beneficial virus so 
far, and explain why they have been unsuccessful. 
3. 1. The “ Anti-Virus” Virus 
Some computer viruses are designed to work not only in a “ virgin” environment of 
infectable programs, but also on systems that include anti-virus software and 
even other computer viruses. In order to survive successfully in such 
environments, those viruses contain mechanisms to disable and/or remove the said 
anti-virus programs and “ competitor” viruses. Examples for such viruses in the 
IBM PC environment are Den_Zuko (removes the Brain virus and replaces it with 
itself), Yankee_Doodle (the newer versions are able to locate the older ones and 
“ upgrade” the infected files by removing the older version of the virus and 
replacing it with the newer one), Neuroquila (disables several anti-virus 
programs), and several other viruses. 
Several people have had the idea to develop the above behaviour further and to 
create an “ anti-virus” virus – a virus which would be able to locate other 
(presumably malicious) computer viruses and remove them. Such a self-replicating 
anti-virus program would have the benefits to spread very fast and update itself 
automatically. 
Several viruses have been created as an implementation of the above idea. Some 
of them locate a few known viruses and remove them from the infected files, 
others attach themselves to the clean files and issue an error message if 
another piece of code becomes attached after the virus (assuming that it has to 
be an unwanted virus), and so on. However, all such pieces of “ self-replicating 
anti-virus software” have been rejected by the users, who have considered the 
“ anti-virus” viruses just as malicious and unwanted as any other real computer 
virus. In order to understand why, it is enough to realize that the “ anti-virus 
viruses” matches several of the rules that state why a replicating program is 
considered malicious and/or unwanted. Here is a list of them for this particular 
idea. 
First, this idea violates the Control condition. Once the “ anti-virus” virus is 
released, its author has no means to control it. 
Second, it violates the Recognition condition. A virus that attaches itself to 
executable files will definitely trigger the anti-virus programs based on 
monitoring or integrity checking. There is no way for those programs to decide 
whether they have been triggered by a “ beneficial” virus or not. 
Third, it violates the Resource Wasting condition. Adding an almost identical 
piece of code to every executable file on the system is definitely a waste – the 
same purpose can be achieved with a single copy of the code and a single file, 
containing the necessary data. 
Fourth, it violates the Bug Containment condition. There is no easy way to 
locate and update or remove all instances of the virus. 
Fifth, it causes several compatibility problems, especially to the selfchecking 
programs, thus violating the Compatibility condition. 
Sixth, it is not as effective as a non-viral program, thus violating the 
Effectiveness condition. A virus-specific anti-virus program has to carry 
thousands of scan strings for the existing malicious viruses – it would be very 
ineffective to attach a copy of it to every executable file. Even a generic 
anti-virus (i. e., based on monitoring or integrity checking) would be more 
effective if it exists only in one example and is executed under the control of 
the user. 
Seventh, such a virus modifies other people’s programs without their 
authorization, thus violating the Unauthorized Modification condition. In some 
cases such viruses ask the user for permission before “ protecting” a file by 
infecting it. However, even in those cases they cause unwanted interruptions, 
which, as we already demonstrated, in some situations can be fatal. 
Eight, by modifying other programs such viruses violate the Copyright condition. 
Ninth, at least with the current implementations of “ anti-virus” viruses, it is 
trivial to modify them to carry destructive code – thus violating the Misuse 
condition. 
Tenth, such viruses are already widely being used as examples by the virus 
writers when they are trying to defend their irresponsible actions and to 
disguise them as legitimate research – thus the idea violates the responsibility 
condition too. 
As we can see from the above, the idea of a beneficial anti-virus virus is “ bad” 
according to almost any of the criteria listed by the users. 
3. 2. The “ File Compressor” Virus 
This is one of the oldest ideas for “ beneficial” viruses. It is first mentioned 
in Dr. Cohen’s original work [Cohen84]. The idea consists of creating a self- 
replicating program, which will compress the files it infects, before attaching 
itself to them. Such a program is particularly easy to implement as a shell 
script for Unix, but it is perfectly doable for the PC too. And it has already 
been done – there is a family of MS-DOS viruses, called Cruncher, which appends 
itself to the executable files, then compresses the infected file using Lempel- 
Zev-Huffman compression, and then prepends a small decompressor which would 
decompress the file in memory at runtime. 
Regardless of the supposed benefits, this idea also fails the test of the 
criteria listed in the previous section. Here is why. 
First, the idea violates the Control condition. Once released, the author of the 
virus has no means to controls its spread. In the particular implementation of 
Cruncher, the virus writer has attempted to introduce some kind of control. The 
virus asks the user for permission before installing itself in memory, causing 
unwanted interruptions. It is also possible to tell the virus to install itself 
without asking any questions – by the means of setting an environment variable. 
However, there are no means to tell the virus not to install itself and not to 
ask any questions – which should be the default action. 
Second, the idea violates the Recognition condition. Several virus scanners 
detect and recognize Cruncher by name, the process of infecting an executable 
triggers most monitoring programs, and the infected files are, of course, 
modified, which triggers most integrity checkers. 
Third, the idea violates the Resource condition. A copy of the decompressor is 
present in every infected file, which is obviously unnecessary. 
Fourth, the idea violates the Bug Containment condition. If bugs are found in 
the virus, the author has no simple means to distribute the fix and to upgrade 
all existing copies of the virus. 
Fifth, the idea violates the Compatibility condition. There are many files which 
stop working after being compressed. Examples include programs that perform a 
self-check at runtime, self-modifying programs, programs with internal overlay 
structure, Windows executables, and so on. Admitedly, those programs stop 
working even after being compressed with a stand-alone (i. e., non-viral) 
compression program. However, it is much more difficult to compress them by 
accident when using such a program – quite unlike the case when the user is 
running a compression virus. 
Sixth, the idea violates the Effectiveness condition. It is perfectly possible 
to use a stand-alone, non-viral program to compress the executable files and 
prepend a short decompressor to them. This has the added advantage that the code 
for the compressor does not have to reside in every compressed file, and thus we 
don’t have to worry about its size or speed – because it has to be executed only 
once. True, the decompressor code still has to be present in each compressed 
file and many programs will still refuse to work after being compressed. The 
solution is to use not compression at a file level, but at a disk level. And 
indeed, compressed file systems are available for many operating environments 
(DOS, Novell, OS/2, Unix) and they are much more effective than a file-level 
compressor that spreads like a virus. 
Seventh, the idea still violates the Copyright condition. It could be argued 
that it doesn’t violate the Data Modification condition, because the user is 
asked to authorize the infection. We shall accept this, with the remark 
mentioned above – that it still causes unwanted interruptions. It is also not 
very trivial to modify the virus in order to make it malicious, so we’ll assume 
that the Misuse condition is not violated too – although no serious attempts are 
made to ensure that the integrity of the virus has not been compromised. 
Eighth, the idea violates the responsibility condition. This particular virus – 
Cruncher – has been written by the same person who has released many other 
viruses – far from “ beneficial” ones – and Cruncher is clearly used as an 
attempt to condone virus writing and to masquerade it as legitimate “ research”. 
3. 3. The “ Disk Encryptor” Virus 
This virus has been published by Mark Ludwig – author of two books and a 
newsletter on virus writing, and of several real viruses, variants of many of 
which are spreading in the real world, causing real damage. 
The idea is to write a boot sector virus, which encrypts the disks it infects 
with a strong encryption algorithm (IDEA in this particular case) and a user- 
supplied password, thus ensuring the privacy of the user’s data. Unfortunately, 
this idea is just as flawed as the previous ones. 
First, it violates the Control condition. True, the virus author has attempted 
to introduce some means of control. The virus is supposed to ask the user for 
permission before installing itself in memory and before infecting a disk. 
However, this still causes unwanted interruptions and reportedly in some cases 
doesn’t work properly – that is, the virus installs itself even if the user has 
told it not to. 
Second, it violates the Recognition condition. Several virus-specific scanners 
recognize this virus either by name or as a variant of Stealth_Boot, which it 
actually is. Due to the fact that it is a boot sector infector, it is unlikely 
to trigger the monitoring programs. However, the modification that it causes to 
the hard disk when infecting it, will trigger most integrity checkers. Those 
that have the capability to automatically restore the boot sector, thus removing 
any possibly present virus, will cause the encrypted disk to become inaccessible 
and therefore cause serious damage. 
Third, the idea violates the Compatibility condition. A boot sector virus that 
is permanently resident in memory usually causes problems to Windows 
https://assignbuster.com/are-good-computer-viruses-still-a-bad-idea-13782/
image1.png




image2.png
Q ASSIGN

BUSTER




