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1. Introduction 
Irreversible thermodynamic processes are characterized by a positive 

entropy change in their “ Universe”, i. e., in the combined system of interest 

and its environment [ 1 ]. In macroscopic (equilibrium) thermodynamics, 

where entropy is a state variable, this change usually refers to the difference

between the entropy in the final state of the “ Universe” reached at the end 

of the process and in the initial state from where it started. In small 

mesoscopic systems on the micro- and nanometer scale, such as a colloidal 

Brownian particle diffusing in an aqueous solution, it has been established 

within the framework of stochastic thermodynamics [ 2 – 6 ] that the total 

entropy change should be evaluated from the entropy produced in the 

system and in its thermal environment along the specific trajectory the 

system follows during the process. This procedure remains valid even when 

the system is far from equilibrium, for example due to persistent currents or 

because it is driven by an external protocol realizing the thermodynamic 

process. The omnipresence of thermal fluctuations on the mesoscopic scale 

leads to a distribution of possible paths the system can take to go from the 

initial to the final state, and, accordingly to a distribution of entropy changes.

A central result in stochastic thermodynamics is that the total entropy 

change Δ S along a specific realization of the system path (divided by 

Boltzmann’s constant k B ) equals the log-ratio of probabilities for observing 

that specific path vs. observing the same path in a time-reversed manner, i. 

e., traversing the same trajectory, but from the final state to the original 

initial state [ 2 – 5 ]. As a direct consequence, the total entropy change Δ S 

fulfills a so-called fluctuation theorem,  exp ( − Δ S / k B )  = 1 (the angular 〈 〉
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brackets denote an average over all trajectories connecting the initial and 

final states), which can be viewed as a generalization of the second law of 

thermodynamics to the non-equilibrium realm when deviations from 

equilibrium are induced by externally applied forces or gradients. 

A fundamentally different class of non-equilibrium systems are so-called “ 

active particles”, like Janus colloids with catalytic surfaces or bacteria [ 7 – 

11 ], which have the ability to locally convert energy into self-propulsion, i. 

e., they move independently of external forces or thermal fluctuations. The 

source of non-equilibrium is the energy-to-motion conversion process on the 

level of the individual particle. This out-of-equilibrium process produces 

entropy, but the various degrees of freedom maintaining the self-propulsion 

are usually not observable in typical experiments with active particles, such 

that this entropy production can in general not be quantified. Moreover, for 

the (collective) behavior of active particles emerging from self-propulsion, as

described, e. g., in Refs. 12 – 15 , the details of the propulsion mechanism 

and the amount of dissipation connected with it are largely irrelevant. In 

analogy to the stochastic thermodynamics of passive Brownian particles, a 

central question in active matter is therefore how the path probabilities for 

translational degrees of freedom of the active particles and the associated 

log-ratio of forward vs. backward path probabilities is connected to 

irreversibility and entropy production [ 16 – 18 ]. We remark that this is an 

ongoing debate [ 16 , 19 – 24 ] which we will not resolve here. Rather, we 

will provide a central step toward an understanding of the role of the path 

probability ratio in active matter by providing exact analytical expressions 

for a simple but highly successful and well-established [ 15 , 25 – 31 ] model 
https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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of active matter, namely the active Ornstein-Uhlenbeck particle (AOUP) [ 16 ,

18 – 21 , 24 , 32 – 44 ]. In this model, self-propulsion is realized via a 

fluctuating “ driving force” in the equations of motion [ 7 , 10 ] with Gaussian

distribution and exponential time-correlation (see Section 2. 1). By 

integrating out these active fluctuations, we derive an explicit analytical 

expression for the path weight of an AOUP, valid for arbitrary values of the 

model parameters, arbitrary finite duration of the particle trajectory and 

arbitrary initial distributions of particle positions and active fluctuations (see 

Section 4). Using this path weight, we then derive the irreversibility measure 

in form of the log-ratio of forward vs. backward path probabilities and 

comment on its physical implications (Section 5). Before establishing these 

general results, we briefly recall earlier findings from Ref. 18 for independent

initial conditions of particle positions and active fluctuations, see Section 3. 

We conclude with a short discussion in Section 6, including potential 

applications of our results. 

2. Setup 
2. 1. Model 
The model for an active Ornstein-Uhlenback particle (AOUP) consists in a 

standard overdamped Langevin equation for a passive Brownian particle at 

position x in d dimensions with an additional fluctuating force, which 

represents the active self-propulsion and which we denote by 2 D a η ( t ) , 

x ˙ ( t ) = 1 γ f ( x ( t ) , t ) + 2 D a η ( t ) + 2 D ξ ( t ) . ( 1 ) 

Here, the dot denotes the time-derivative, γ is the viscous friction coefficient,

f ( x , t ) represents externally applied forces (conservative or non-
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conservative, and possibly time-dependent). Furthermore, ξ ( t ) are 

mutually independent Gaussian white noise sources modeling thermally 

fluctuating forces with δ -correlation in time, i. e.,  ξ i ( t )  = 0 ,  ξ i ( t ) ξ j (〈 〉 〈

t ′ )  = δ i j δ ( t − t ′ ) , and 〉 D is the particle diffusion coefficient, related to 

the temperature T of the thermal bath via Einstein’s relation D = k B T / γ . 

All bold-face letters represent d -dimensional vectors with components 

usually labeled by subscripts i , j , etc. In analogy to the thermal fluctuations,

we denote the strength of the active fluctuations η ( t ) by 2 D a with an 

active “ diffusion coefficient” D a . For an AOUP, the active fluctuations follow

a Gaussian process with exponential time-correlations, which can be 

generated by a so-called Ornstein-Uhlenbeck process, 

η ˙ ( t ) = − 1 τ a η ( t ) + 1 τ a ζ ( t ) , ( 2 ) 

where τ a is the correlation time of the active noise fluctuations, i. e., 

 η i ( t ) η j ( t ′ )  = δ i j 2 τ a e − | t − t ′ | / τ a . ( 3 ) 〈 〉

2. 2. Central Quantity of Interest 
Our central goal is to evaluate the path weight P [ x ¯ | x i ] for particle 

positions alone, conditioned on the initial position x i for an arbitrary initial 

distribution p i ( η i | x i ) of the active fluctuations given the specific value x i

. By definition, we can write this path weight as 

P [ x ¯ | x i ] = ∫  D η ¯ P [ x ¯ , η ¯ | x i , η i ] p i ( η i | x i ) , ( 4 ) 

where the path integral over η ¯ : = { η ( t ) } t = τ i τ f includes the initial 

configuration η i , whereas the notation η ¯ : = { η ( t ) } t > τ i τ f denotes 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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the same history of active fluctuations without the initial configuration η i , 

and similarly for x ¯ : = { x ( t ) } t > τ i τ f . Moreover, 

P [ x ¯ , η ¯ | x i , η i ] ∝ exp { − ∫  τ i τ f d t [ ( x ˙ t − v t − 2 D a η t ) 2 4 D 

+ ( τ a η ˙ t + η t ) 2 2 + ∇ ⋅ v t 2 ] } ( 5 ) 

is the standard Onsager-Machlup path weight [ 45 – 47 ] for the joint process

( x ¯ , η ¯ ) , where we use the shorthand notation v t = f t / γ = f ( x ( t ) , t ) /

γ and x t ≡ x ( t ) , η t ≡ η ( t ) , etc. The technical challenge consists in 

performing the integral over the active fluctuations η ¯ without explicitly 

specifying the initial distribution p i ( η i | x i ) . 

3. Path Weight for Independent Initial Conditions 
3. 1. The Results From Ref. 18 
We start by summarizing the main results from Ref. 18 . In Ref. 18 we gave 

the path weight for trajectories x ¯ = { x ( t ) } t = 0 τ , running from initial 

time τ i = 0 to final time τ f = τ , assuming that the active noise is initially 

independent of the particle positions and in its steady state, i. e., p i ( η 0 | x 

0 ) = p ss ( η 0 ) = τ a / π e − τ a η 0 2 . We found 

P ( 0 , τ ] ind [ x ¯ | x 0 ] ∝ exp { − 1 4 D ∫  0 τ d t ∫  0 τ d t ′ [ x ˙ t − v t ] T 

[ δ ( t − t ′ ) − D a D Γ [ 0 , τ ] ind ( t , t ′ ) ] [ x ˙ t ′ − v t ′ ] − 1 2 ∫  0 τ d t ∇ ⋅ 

v t } , ( 6 ) 

with the memory kernel 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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Γ [ 0 , τ ] ind ( t , t ′ ) : = ( 1 2 τ a 2 λ ) × κ + 2 e − λ | t − t ′ | + κ − 2 e − λ (

2 τ − | t − t ′ | ) − κ + κ − [ e − λ ( t + t ′ ) + e − λ ( 2 τ − t − t ′ ) ] κ + 2 − κ

− 2 e − 2 λ τ , ( 7 ) 

where λ : = 1 + D a / D / τ a and κ ± : = 1 ± 1 + D a / D . 

3. 2. Stationary-State Scenario 
If we have a trajectory x ¯ = { x ( t ) } t = τ i τ f running from arbitrary times

τ i to τ f instead, we can shift time as t → t − τ i and identify τ = τ f − τ i as 

the duration of the trajectory to convert ( 0 , τ ] path weights to those 

running from τ i to τ f . Performing these replacements, the memory kernel 

Eq. 7 turns into 

Γ [ τ i , τ f ] ind ( t , t ′ ) : = ( 1 2 τ a 2 λ ) × κ + 2 e − λ | t − t ′ | + κ − 2 e − 

λ [ 2 ( τ f − τ i ) − | t − t ′ | ] − κ + κ − [ e − λ ( t + t ′ − 2 τ i ) + e − λ ( 2 τ f

− t − t ′ ) ] κ + 2 − κ − 2 e − 2 λ ( τ f − τ i ) . ( 8 ) 

Consequently, the corresponding path weight for a trajectory starting at x i 

at time τ i reads 

P ( τ i , τ f ] ind [ x ¯ | x i ] ∝ exp { − 1 4 D ∫  τ i τ f d t ∫  τ i τ f d t ′ [ x ˙ t − v

t ] T [ δ ( t − t ′ ) − D a D Γ [ τ i , τ f ] ind ( t , t ′ ) ] [ x ˙ t ′ − v t ′ ] − 1 2 ∫  τ i 

τ f d t ∇ ⋅ v t } . ( 9 ) 

Letting τ i → − ∞ (stationary-state scenario), the memory kernel becomes 

Γ ( − ∞ , τ f ] ind ( t , t ′ ) = 1 2 τ a 2 λ [ e − λ | t − t ′ | − κ − κ + e − λ ( 2 τ f

− t − t ′ ) ] . ( 10 ) 
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For “ infinitely long” stationary-state trajectories, for which also τ f → ∞ , this 

expression further reduces to 

Γ ( − ∞ , ∞ ) ind ( t , t ′ ) = 1 2 τ a 2 λ e − λ | t − t ′ | . ( 11 ) 

The latter special case has been derived independently in Ref. 24 via Fourier 

transformation, see eq. 25 in Ref. 24 , in order to analyze “ entropy 

production” based on path-probability ratios. Similar Fourier-transform 

techniques for Langevin systems have been used in Ref. 48 for deriving a 

fluctuation relation at large times, with findings for the non-local “ inverse 

temperature” as integration kernel in the “ entropy production” 

corresponding to those in Ref. 24 , and to our Eq. 11 . 

4. Path Weight for Arbitrary Initial Conditions 
In this section, we generalize the path weight Eq. 9 to allow for arbitrary joint

initial distributions p i ( x i , η i ) of particle positions and active fluctuations. 

Keeping in mind that we can time-shift final results between trajectories 

running during a time interval ( 0 , τ ] and during arbitrary intervals ( τ i , τ 

f ] as in Section 3. 2, we here consider without loss of generality trajectories 

with τ i = 0 and τ f = τ . For notational simplicity we drop the subscripts ( 0 ,

τ ] or [ 0 , τ ] on P and Γ . 

We start in Section 4. 1 by first calculating Γ for a general Gaussian initial 

distribution of η 0 independent of x 0 , which has variance σ 2 and is 

centered at η ^ 0 , 

p η ^ 0 , σ ( η 0 ) = 1 2 π σ 2 e − ( η 0 − η ^ 0 ) 2 / 2 σ 2 . ( 12 ) 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
for-active-ornstein-uhlenbeck-particles/



 Irreversibility in active matter: genera... – Paper Example  Page 9

Then, in Section 4. 2, we show how this result can be used to cover any 

arbitrary initial distribution p i ( η 0 | x 0 ) . 

4. 1 Gaussian Initial Distribution 
With Eqs 4 and 5 , and the initial distribution p i ( η i | x i ) = p i ( η 0 | x 0 ) =

p i ( η 0 ) = p η ^ 0 , σ ( η 0 ) from Eq. 12 , the path weight we want to 

evaluate reads 

P η ^ 0 , σ ind [ x ¯ | x 0 ] ∝ 1 2 π σ 2 ∫  D η ¯ × exp { − ∫  0 τ d t [ ( x ˙ t − v 

t − 2 D a η t ) 2 4 D + ( τ a η ˙ t + η t ) 2 2 + ∇ ⋅ v t 2 ] − ( η 0 − η ^ 0 ) 2 2 

σ 2 } . ( 13 ) 

The superscript “ ind ” emphasizes again that we use statistically 

independent initial conditions for x 0 and η 0 . After partial integration of the 

η ˙ t terms, similarly as in Ref. 18 , we can express the path integral as 

P η ^ 0 , σ ind [ x ¯ | x 0 ] ∝ 1 2 π σ 2 exp { − ∫  0 τ d t [ ( x ˙ t − v t ) 2 4 D 

+ ∇ ⋅ v t 2 ] − η ^ 0 2 2 σ 2 } × ∫  D η ¯ exp { − 1 2 ∫  0 τ d t ∫  0 τ d t ′ η t T 

V σ ( t , t ′ ) η t ′ + ∫  0 τ d t η t T [ 2 D a 2 D ( x ˙ t − v t ) + δ ( t ) η ^ 0 σ 

2 ] } , ( 14 ) 

with the differential operator 

V σ ( t , t ′ ) : = δ ( t − t ′ ) [ − τ a 2 ∂ t ′ 2 + 1 + D a D + δ ( t ′ ) ( − τ a 2 ∂ t ′ 

− τ a + 1 σ 2 ) + δ ( τ − t ′ ) ( τ a 2 ∂ t ′ + τ a ) ] . ( 15 ) 

Performing the Gaussian integral over η ¯ in Eq. 14 , we obtain 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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P η ^ 0 , σ ind [ x ¯ | x 0 ] ∝ ( Det V σ ) − 1 / 2 2 π σ 2 exp { − 1 4 D ∫  0 τ d t

∫  0 τ d t ′ ( x ˙ t − v t ) T × [ δ ( t − t ′ ) − D a D Γ σ ( t , t ′ ) ] ( x ˙ t ′ − v t ′ ) 

+ ∫  0 τ d t [ 2 D a 2 D ( x ˙ t − v t ) T Γ σ ( t , 0 ) σ 2 η ^ 0 − ∇ ⋅ v t 2 ] + [ Γ 

σ ( 0, 0 ) σ 2 − 1 ] η ^ 0 2 2 σ 2 } , ( 16 ) 

where Γ σ ( t , t ′ ) denotes the operator inverse of V σ ( t , t ′ ) in the sense 

that ∫  0 τ d t ′ V σ ( t , t ′ ) Γ σ ( t ′ , t ′ ′ ) = δ ( t − t ′ ′ ) . It can be constructed

similarly to the procedure in Ref. 18 . In particular, we can also write Γ σ ( t , 

t ′ ) = G ( t , t ′ ) + H σ ( t , t ′ ) . Here G ( t , t ′ ) is the Green’s function 

defined by [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] G ( t , t ′ ) = δ ( t − t ′ ) and G ( 0 ,

t ′ ) = G ( τ , t ′ ) = 0 . The second ingredient, H ( t , t ′ ) , is a solution of the 

associated homogeneous problem, [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] H ( t , t ′ )

= 0 , fixing the boundary terms as prescribed by Eq. 15 . More details are 

given the Appendix. We find 

Γ σ ( t , t ′ ) = ( 1 2 τ a 2 λ ) [ κ + ( 1 − σ 2 τ a κ − ) − κ − ( 1 − σ 2 τ a κ + ) 

e − 2 λ τ ] − 1 [ κ + ( 1 − σ 2 τ a κ − ) e − λ | t − t ′ | + κ − ( 1 − σ 2 τ a κ +

) e − λ ( 2 τ − | t − t ′ | ) − κ + ( 1 − σ 2 τ a κ + ) e − λ ( t + t ′ ) − κ − ( 1 − 

σ 2 τ a κ − ) e − λ ( 2 τ − t − t ′ ) ] . ( 17 ) 

We note that Eq. 12 includes the steady-state distribution, p ss ( η 0 ) = τ a / 

π e − τ a η 0 2 , which arises for the active noise when evolving 

independently of the Brownian particle, as a special case for η ^ 0 = 0 and σ

2 = 1 / ( 2 τ a ) . Accordingly, we recover Eqs 6 and 7 when plugging η ^ 0 =

0 and σ 2 = 1 / ( 2 τ a ) into Eqs 16 and 17 , using 1 − κ ± / 2 = κ ∓ / 2 . 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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4. 2. Arbitrary Initial Distribution 
To cover arbitrary initial distributions p i ( η i | x i ) = p i ( η 0 | x 0 ) in η 0 , 

we introduce a δ -distribution of the form δ ( η 0 − η ^ 0 ) = lim σ → 0 e − ( η

0 − η ^ 0 ) 2 / 2 σ 2 / 2 π σ 2 and rewrite Eq. 4 (with τ i = 0 , τ f = τ ) as 

P [ x ¯ | x 0 ] = ∫  D η ¯ P [ x ¯ , η ¯ | x 0 , η 0 ] p i ( η 0 | x 0 ) = ∫  D η ¯ P [ x ¯

, η ¯ | x 0 , η 0 ] ∫  d η ^ 0 δ ( η 0 − η ^ 0 ) p i ( η ^ 0 | x 0 ) = lim σ → 0 ∫  d 

η ^ 0 p i ( η ^ 0 | x 0 ) [ 1 2 π σ 2 ∫  D η ¯ P [ x ¯ , η ¯ | x 0 , η 0 ] e − ( η 0 − 

η ^ 0 ) 2 / 2 σ 2 ] . ( 18 ) 

In view of Eq. 5 we see that the term in brackets is exactly P η ^ 0 , σ ind [ x 

¯ | x 0 ] as defined in Eq. 13 . Since we can also write P [ x ¯ | x 0 ] = ∫  d η ^ 

0 P [ x ¯ , η ^ 0 | x 0 ] = ∫  d η ^ 0 p i ( η ^ 0 | x 0 ) P [ x ¯ | x 0 , η ^ 0 ] we 

conclude that 

P [ x ¯ | x 0 , η ^ 0 ] = lim σ → 0 P η ^ 0 , σ ind [ x ¯ | x 0 ] ( 19 ) 

is the path weight conditioned on an initial position x 0 and initial state of the

active noise η ^ 0 with arbitrary distributions. 

With the explicit result Eq. 16 for P η ^ 0 , σ ind [ x ¯ | x 0 ] we thus see that 

we have to calculate the σ → 0 limit of the expressions ( σ 2 Det V σ ) 1 / 2 , [

Γ σ ( t , 0 ) / σ 2 − 1 ] / σ 2 , Γ σ ( 0, 0 ) / σ 2 and Γ σ ( t , t ′ ) . From Eq. 15 we 

observe that σ 2 V σ has a constant term (independent of σ) and 

contributions quadratic in σ such that ( σ 2 Det V σ ) 1 / 2 reduces to an 

(irrelevant) constant as σ → 0 . Next, setting t ′ = 0 in Eq. 17 and using τ a κ 

+ − τ a κ − = 2 τ a 2 λ we get 
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Γ σ ( t , 0 ) σ 2 = κ + e − λ t − κ − e − λ ( 2 τ − t ) κ + ( 1 − σ 2 τ a κ − ) − κ

− ( 1 − σ 2 τ a κ + ) e − 2 λ τ → σ → 0 κ + e − λ t − κ − e − λ ( 2 τ − t ) κ + 

− κ − e − 2 λ τ . ( 20 ) 

If t = 0 , too, we obtain 

Γ σ ( 0, 0 ) σ 2 = κ + − κ − e − 2 λ τ κ + ( 1 − σ 2 τ a κ − ) − κ − ( 1 − σ 2 τ 

a κ + ) e − 2 λ τ , ( 21 ) 

such that 

[ Γ σ ( 0, 0 ) σ 2 − 1 ] 1 σ 2 = κ + κ − τ a ( 1 − e − 2 λ τ ) κ + ( 1 − σ 2 τ a κ 

− ) − κ − ( 1 − σ 2 τ a κ + ) e − 2 λ τ → σ → 0 κ + κ − τ a ( 1 − e − 2 λ τ ) κ 

+ − κ − e − 2 λ τ . ( 22 ) 

Furthermore, we define 

Γ ( t , t ′ ) : = lim σ → 0 Γ σ ( t , t ′ ) = ( 1 2 τ a 2 λ ) × κ + e − λ | t − t ′ | + κ 

− e − λ ( 2 τ − | t − t ′ | ) − κ + e − λ ( t + t ′ ) − κ − e − λ ( 2 τ − t − t ′ ) κ 

+ − κ − e − 2 λ τ ( 23 ) 

as the memory kernel for the path weight conditioned on an arbitrary initial 

configuration ( x 0 , η ^ 0 ) of particle positions and active fluctuations. 

Altogether, Eq. 19 for this path weight then becomes 

P [ x ¯ | x 0 , η ^ 0 ] ∝ exp { − 1 4 D ∫  0 τ d t ∫  0 τ d t ′ ( x ˙ t − v t ) T [ δ ( t

− t ′ ) − D a D Γ ( t , t ′ ) ] ( x ˙ t ′ − v t ′ ) + ∫  0 τ d t [ 2 D a 2 D ( x ˙ t − v t ) 

T κ + e − λ t − κ − e − λ ( 2 τ − t ) κ + − κ − e − 2 λ τ η ^ 0 − ∇ ⋅ v t 2 ] − 

D a 2 D [ τ a ( 1 − e − 2 λ τ ) κ + − κ − e − 2 λ τ ] η ^ 0 2 } ( 24 ) 
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where we have used κ + κ − = − D a / D in the fourth line. 

Finally, we can shift trajectories similarly as in Section 3. 2 to obtain the path

weight for arbitrary trajectories x ¯ = { x ( t ) } t = τ i τ f conditioned on the 

joint initial state ( x i , η i ) of position and active noise, 

P ( τ i , τ f ] [ x ¯ | x i , η i ] ∝ exp { − 1 4 D ∫  τ i τ f d t ∫  τ i τ f d t ′ [ x ˙ t − 

v t ] T [ δ ( t − t ′ ) − D a D Γ [ τ i , τ f ] ( t , t ′ ) ] [ x ˙ t ′ − v t ′ ] + ∫  τ i τ f d t

[ 2 D a 2 D [ x ˙ t − v t ] T κ + e − λ ( t − τ i ) − κ − e − λ ( 2 τ f − t − τ i ) κ 

+ − κ − e − 2 λ ( τ f − τ i ) η i − ∇ ⋅ v t 2 ] − D a 2 D [ τ a ( 1 − e − 2 λ ( τ f 

− τ i ) ) κ + − κ − e − 2 λ ( τ f − τ i ) ] η i 2 } ( 25 ) 

with 

Γ [ τ i , τ f ] ( t , t ′ ) : = ( 1 2 τ a 2 λ ) × κ + e − λ | t − t ′ | + κ − e − λ ( 2 ( τ

f − τ i ) − | t − t ′ | ) − κ + e − λ ( t + t ′ − 2 τ i ) − κ − e − λ ( 2 τ f − t − t ′ )

κ + − κ − e − 2 λ ( τ f − τ i ) . ( 26 ) 

Given an initial distribution p i ( η i | x i ) of the active fluctuations 

conditioned on the initial particle position, we can then compute the position-

only path weight of an arbitrary trajectory by averaging over p i ( η i | x i ) , 

P ( τ i , τ f ] [ x ¯ | x i ] = ∫  d η i P ( τ i , τ f ] [ x ¯ | x i , η i ] p i ( η i | x i ) . 

( 27 ) 

Equations 25 – 27 represent the first central result of the present 

contribution, a general expression for the path weight of active Ornstein-

Uhlenbeck particles in position space only, for arbitrary trajectories with 

arbitrary initial and final times and arbitrary initial distributions. There is no 
https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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approximation involved, so that our results are valid for any values of 

thermal and active noise parameters D and D a , τ a . 

We expect that the specific initial configuration becomes irrelevant for 

steady-state trajectories, i. e., in the limit τ i → − ∞ . As τ i → − ∞ , the 

second line vanishes in Eq. 25 , because κ + e − λ ( t − τ i ) − κ − e − λ ( 2 τ

f − t − τ i ) / κ + − κ − e − 2 λ ( τ f − τ i ) → 0 . The third line enters into the 

integral over the initial configuration η i (see Eq. 27 ) and thus decouples 

from the trajectory x ¯ resulting in an irrelevant prefactor. The only relevant 

contribution as τ i → − ∞ is therefore the first line in Eq. 25 with the integral 

kernel Γ [ τ i , τ f ] ( t , t ′ ) reducing to 

Γ ( − ∞ , τ f ] ( t , t ′ ) = 1 2 τ a 2 λ [ e − λ | t − t ′ | − κ − κ + e − λ ( 2 τ f − t

− t ′ ) ] , ( 28 ) 

the same expression as Γ ( − ∞ , τ f ] ind ( t , t ′ ) from Eq. 10 . This 

illustrates that the system loses its memory about the initial state as τ i → − 

∞ . 

Another comparison to our previous results from Section 3. 1 [ 18 ] is 

obtained by plugging the stationary state distribution p i ( η i | x i ) = p ss ( η 

i ) = τ a / π e − τ a η i 2 into Eq. 27 and performing the Gaussian integral 

over η i . In that case, we should get back the result Eq. 8 , Eq. 9 for 

independent initial conditions. Indeed, including only the terms from Eq. 25 

which involve η i , we evaluate the Gaussian integral over η i , yielding 

∫  d η i exp ∫  d η i exp { ∫  τ i τ f d t [ 2 D a 2 D [ x ˙ t − v t ] T κ + e − λ ( t 

− τ i ) − κ − e − λ ( 2 τ f − t − τ i ) κ + − κ − e − 2 λ ( τ f − τ i ) ] η i − τ a 2
https://assignbuster.com/irreversibility-in-active-matter-general-framework-
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[ 2 + D a D ( 1 − e − 2 λ ( τ f − τ i ) ) κ + − κ − e − 2 λ ( τ f − τ i ) ] η i 2 } 

= exp { − 1 4 D ∫  τ i τ f d t ∫  τ i τ f d t ′ [ x ˙ t − v t ] T [ − D a D Γ [ τ i , τ 

f ] ini ( t , t ′ ) ] [ x ˙ t ′ − v t ′ ] } ( 29 ) 

with 

Γ [ τ i , τ f ] ini ( t , t ′ ) = ( 1 τ a ) × κ + 2 e − λ ( t + t ′ − 2 τ i ) + κ − 2 e − 

λ ( 4 τ f − t − t ′ − 2 τ i ) − 2 κ + κ − e − 2 λ ( τ f − τ i ) [ e λ ( t − t ′ ) + e λ 

( t ′ − t ) ] ( κ + − κ − e − 2 λ ( τ f − τ i ) ) ( κ + 2 − κ − 2 e − 2 λ ( τ f − τ i )

) . ( 30 ) 

A somewhat tedious but straightforward calculation then confirms Γ [ τ i , τ 

f ] ( t , t ′ ) + Γ [ τ i , τ f ] ini ( t , t ′ ) = Γ [ τ i , τ f ] ind ( t , t ′ ) , as expected. 

5. Irreversibility 
In stochastic thermodynamics [ 2 – 6 ], irreversibility is quantified by 

comparing the probability P [ x ¯ ] = P [ x ¯ | x i ] p i ( x i ) of observing a 

specific trajectory x ¯ = { x ( t ) } t = τ i τ f in a given experimental setup 

with the probability P ˜ [ x ˜ ¯ ] of observing the exact same trajectory traced

out backwards when providing identical experimental conditions. In other 

words, P ˜ [ x ˜ ¯ ] is the probability of observing the “ time-reversed” 

trajectory 

x ˜ ¯ = { x ˜ ( t ) } t = τ i τ f = { x ( τ f + τ i − t ) } t = τ i τ f , ( 31 ) 

with x ˜ ( τ i ) = x ( τ f ) and x ˜ ( τ f ) = x ( τ i ) , under the time-reversed 

experimental protocol f ˜ ( x , t ) : = f ( x , τ f + τ i − t ) (note that we 

disregard for convenience the possibility that parts of the forces could be 
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odd under time reversal; it is straightforward to adapt the expressions below 

accordingly if necessary). For passive Brownian motion, it has been shown 

that the log-ratio of these path probabilities is related to the dissipation 

occurring along the trajectory x ¯ , quantified as the total change of entropy 

in the thermal bath and the system. This fundamental connection makes the 

“ irreversibility measure” 

ΔΣ [ x ¯ ] = − k B ln P ˜ [ x ˜ ¯ ] P [ x ¯ ] ( 32 ) 

a central quantity of interest also for active particles. Indeed, its connection 

with dissipation and entropy is under lively debate [ 16 , 18 – 24 ]. 

We here provide a general expression for ΔΣ based on our result Eqs. 25 – 27

for the path weight P [ x ¯ ] . Since the time-reversed trajectory x ˜ ¯ is 

supposed to occur under identical conditions as the forward trajectory x ¯ , 

we can express its probability density via Eqs. 25 – 27 as well, if we replace v

( x , t ) by the time-reversed protocol v ˜ ( x , t ) = f ˜ ( x , t ) / γ (see below 

Eq. 31 ). Using Eq. 31 we then rewrite the path weight for the reversed path 

in terms of the forward path (and the original protocol v t = v ( x ( t ) , t ) ). 

The resulting expression for P ˜ [ x ˜ ¯ ] is formally similar to Eq. 25 , just with

the sign inverted for all x ˙ ( t ) terms and all initial coordinates replaced by 

final ones. Plugging the path weights P [ x ¯ ] and P ˜ [ x ˜ ¯ ] into Eq. 32 , 

and denoting the conditional average over the initial configuration η i of the 

active fluctuations ∫  d η i ( ⋅ ) p i ( η i | x i ) in Eq. 27 by  ⋅  η i | x i and the 〈 〉

corresponding one over final configurations ∫  d η f ( ⋅ ) p f ( η f | x f ) by  ⋅  η〈 〉

f | x f , we find 
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ΔΣ [ x ¯ ] = 1 T ∫  τ i τ f d t ∫  τ i τ f d t ′ x ˙ t T f t ′ [ δ ( t − t ′ ) − D a D Γ [ τ i

, τ f ] ( t , t ′ ) ] − k B ln p ( x f ) p ( x i ) − k B   ln  exp { − ∫ τ i τ f d t [ 2 D a 〈

2 D [ x . t + v t ] T κ + e − λ ( t − τ i ) − κ − e − λ ( 2 τ f − t − τ i ) κ + − κ −

e − 2 λ ( τ f − τ i ) η f ] }  η f | x f  exp { + ∫ τ i τ f d t [ 2 D a 2 D [ x . t − v 〉 〈

t ] T κ + e − λ ( t − τ i ) − κ − e − λ ( 2 τ f − t − τ i ) κ + − κ − e − 2 λ ( τ f 

− τ i ) η i ] }  η i | x i − k B ln  exp { − D a 2 D [ τ a ( 1 − e − 2 λ ( τ f − τ i )〉 〈

) κ + − κ − e − 2 λ ( τ f − τ i ) ] η f 2 }  η f | x f  exp { − D a 2 D [ τ a ( 1 − 〉 〈

e − 2 λ ( τ f − τ i ) ) κ + − κ − e − 2 λ ( τ f − τ i ) ] η i 2 }  η i | x i . ( 33 ) 〉

This expression constitutes the second central result of this work. Given any 

spatial trajectory x ¯ = { x ( t ) } t = τ i τ f , the measure ΔΣ [ x ¯ ] quantifies 

how irreversible this single trajectory is in the sense of the definition Eq. 32 . 

A trajectory with ΔΣ [ x ¯ ] = 0 is reversible, i. e., movement of the AOUP 

forward or backward along the trajectory occurs with equal probability, but 

the larger ΔΣ [ x ¯ ] the (exponentially) less likely it is to observe the 

backward movement. 

Central properties of the active fluctuations which drive the particle motion 

are represented by the parameters D a (the strength of the active 

fluctuations) and τ a (their correlation time, hidden in λ = 1 + D a / D / τ a ). 

Moreover, our general result Eq. 33 contains averages over the distributions 

of the active fluctuations η i and η f at the beginning of the particle trajectory

and at the beginning of the reversed trajectory (see also Eq. 27 ). We 

therefore presuppose that we have some knowledge or control over these 

distributions when setting up the experiment, even though the (microscopic) 

degrees of freedom related to the active fluctuations typically are 
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inaccessible, and so are specific realizations of η ( t ) or the specific values of

η i and η f . For artificial active colloids [ 10 ], or in computer experiments, 

we may imagine, e. g., to let the particles orient randomly before “ switching

on” the activity, possibly with a specific strength (distribution). 

In the spirit of quantifying irreversibility by asking how likely it is to observe 

a reversed trajectory compared to its forward twin when starting from 

identically prepared experimental setups (except for the initial particle 

position, which is x i for the forward path and x f for the backward path), we 

may take the distributions for η i and η f to be the same, or to be “ mirror 

images” of each other under sign-inversion, depending on the physical 

situation modeled by the active fluctuations η ( t ) (see the discussion in Ref. 

18 ) 1 . Moreover, we may imagine the experiment to be prepared in a way 

that the initial distributions of the active fluctuations for forward and 

backward motion are independent of particle positions (a notable exception 

arising, if the experiment starts from a joint steady state). For such 

independent initial conditions with identical (or “ mirrored”) distributions, the

third line in Eq. 33 vanishes. The second line, however, is still non-zero, and 

can be interpreted to quantify the contribution to irreversibility from the 

initial configuration of the active fluctuations. 

The first line in Eq. 33 is independent of η i and η f , and thus measures the 

irreversibility associated with the time-evolution of the spatial particle 

position alone. It contains three terms (two in the double-integral and a 

boundary term), which all represent different contributions to irreversibility. 

The boundary term − k B ln [ p ( x f ) / p ( x i ) ] does not involve any 
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parameters characterizing the thermal bath or the active fluctuations, and is 

usually interpreted as the change in system entropy of the AOUP between 

the beginning and end of the trajectory x ¯ [ 18 ]. The integral involving δ ( t 

− t ′ ) is independent of the active parameters D a and τ a , and is formally 

identical to the entropy produced in the thermal bath along the trajectory x ¯

as known for passive Brownian motion [ 4 ]. However, in the present case of 

an AOUP it does not capture the full heat dissipation, because in addition to 

the force f ( x ( t ) , t ) also active self-propulsion “ forces” 2 D a η ( t ) drive 

the particle and contribute to dissipation, i. e., even though the δ ( t − t ′ ) -

integral can be interpreted as the “ thermal contribution” to irreversibility 

due to the AOUP being in contact with a heat bath, it cannot be identified 

with the entropy produced in this thermal environment (see also the detailed

discussion in Ref. 18 ). The second, proper double-integral encodes the 

(statistical) characteristics of the active fluctuations via its kernel Γ [ τ i , τ f ]

( t , t ′ ) and, furthermore, vanishes if active propulsion is “ switched off”, i. 

e., for D a = 0 . Hence, it can be interpreted to measure the irreversibility “ 

produced” by the active fluctuations along the trajectory x ¯ , and we will 

refer to it as the “ active contribution” to irreversibility. 

These two contributions to irreversibility from the particle trajectory x ¯ , the 

thermal one and the active one, are non-zero only if external forces f ( x , t ) 

= γ v ( x , t ) are present in addition to the active self-propulsion (likewise for

the integral in the second line, i. e., for the contribution associated with the 

initial preparation of the system), implying that the trajectories of “ free 

active motion” appear reversible. For non-conservative forces, both 

contributions typically lead to a time-extensive increase of irreversibility with
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the trajectory length τ. For conservative forces f ( x ) = − ∇ U ( x ) derived 

from a stationary confining potential U ( x ) , the thermal contribution 

reduces to the boundary term [ U ( x i ) − U ( x f ) ] / T and thus is non-

extensive in τ. Due to the double-integral nature of the active part with the 

non-local kernel Γ [ τ i , τ f ] ( t , t ′ ) a similarly obvious argument does not 

apply. Indeed, the question whether or not, or in how far, the trajectory of an

AOUP in a confining potential appears (ir)reversible is still not fully answered 

[ 16 , 18 , 49 ]. We can, however, draw some conclusions from considering 

the limiting cases of small and large correlations times τ a → 0 and τ a → ∞ . 

In the first case, τ a → 0 , the active fluctuations become white and thus 

behave like a thermal bath, such that the AOUP can be imagined to be a 

passive Brownian particle in contact with a heat bath at effective 

temperature γ ( D + D a ) / k B , trapped in a confining potential. 

Accordingly, irreversibility production is non-extensive. In the second case, τ 

a → ∞ , the active fluctuations become constant and thus behave like a bias 

force which slightly tilts the confining potential. Again, the situation is similar

to a trapped passive Brownian particle with non-extensive irreversibility 

production. We can therefore expect that the active contribution to 

irreversibility in a confining potential may become maximal at some 

intermediate value of τ a . 

Another important implication of the result Eq. 33 is that the rate at which 

irreversibility is produced in the stationary state (i. e., upon letting τ i → − 

∞ , cf., Section 3. 2) is independent of the specific initial distribution p i ( x i , 

η i ) . Indeed, the terms in the second and third lines of Eq. 33 vanish as τ i →

− ∞ , and the memory kernel Γ [ τ i , τ f ] ( t , t ′ ) in the first line assumes 
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the form Eq. 28 , independent of the initial distribution (see the discussion in 

Section 4. 2). Hence, if we are only interested in long-time properties, the 

initial configuration in particular of the self-propulsion drive is irrelevant. 

While we might have intuitively expected that the long-time irreversibility 

production rate is independent of the details of the initial setup, it is not 

completely obvious in the presence of memory effects [ 50 , 51 ]. The fact 

that we can verify it for AOUPs is reassuring though, in so far as control over 

the initial state is limited in typical active particle systems (as already 

mentioned above). For infinitely long trajectories τ f → ∞ in the stationary 

state τ i → − ∞ , the expression for ΔΣ [ x ¯ ] reduces further to 

ΔΣ ( − ∞ , ∞ ) [ x ¯ ] = 1 T ∫  τ i τ f d t ∫  τ i τ f d t ′ x ˙ t T f t ′ [ δ ( t − t ′ ) − 

D a D Γ ( − ∞ , ∞ ) ( t , t ′ ) ] ( 34 ) 

with Γ ( − ∞ , ∞ ) ( t , t ′ ) from Eq. 11 (see the discussion around Eq. 28 ), in 

agreement with the findings in Refs. 24 and 48 . 

We conclude this discussion with a remark concerning the relation between 

the expression for ΔΣ [ x ¯ ] found earlier in Ref. 18 and the result Eq. 33 

derived here. In Ref. 18 , we have calculated ΔΣ [ x ¯ ] under the assumption 

that the active fluctuations are in their stationary state, independent of initial

particle positions, at the beginning of the forward path and at the beginning 

of the backward path, i. e., p i ( η i | x i ) = p ss ( η i ) = τ a / π e − τ a η i 2 

and p f ( η f | x f ) = p ss ( η f ) = τ a / π e − τ a η f 2 . The resulting 

expression for Eq. 33 looks formally identical to the first line in Eq. 33 , but 

with Γ [ τ i , τ f ] ( t , t ′ ) substituted by Γ [ τ i , τ f ] ind ( t , t ′ ) from Eq. 8 

(compare with eqs. 42b and 40a in Ref. 18 ). As we can see from the 
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calculation at the end of Section 4. 2 above, the “ amount of irreversibility” 

stemming from the particular stationary-state initial configuration of the 

active fluctuations has been absorbed into Γ [ τ i , τ f ] ind ( t , t ′ ) , and is 

therefore not explicitly visible in Ref. 18 as an additional term analogous to 

the second line in Eq. 33 . 

6. Conclusion 
What can we learn about the non-equilibrium nature of an active system by 

observing particle trajectories, i. e., the evolution of particle positions over 

time? Within the framework of a minimal model for particulate active matter 

on the micro- and nanoscale, the active Ornstein-Uhlenbeck particle [ 15 , 25

– 31 ] (see Eqs. 1 and 2 ), we here contribute an essential step toward 

exploring this question by deriving an exact analytical expression for the 

path weight ( Eqs. 25 – 27 ), which is valid for any values of the model 

parameters, any external driving forces, arbitrary initial particle positions 

and configurations of the active fluctuations, and arbitrary trajectory 

durations. We use this general expression to calculate the log-ratio of path 

weights for forward vs. backward trajectories (see Eq. 33 ). In analogy to the 

stochastic thermodynamics of passive Brownian particles [ 2 – 6 ], such an 

irreversibility measure may provide an approach toward a thermodynamic 

description of active matter [ 16 , 18 – 24 ]. 

In future works we may build on these results to further explore the non-

equilibrium properties of AOUPs. A highly interesting problem is a possible 

thermodynamic interpretation of the path probability ratio ΔΣ [ x ¯ ] [ 18 ], e. 

g., via exploring its connection to active pressure [ 14 , 52 ], to the different 
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phases observed in active matter [ 53 ], or to the arrow of time [ 54 , 55 ] in 

these systems. Such a thermodynamic interpretation, in particular 

concerning the role of dissipation, may finally allow to quantify efficiency 

fluctuations in stochastic heat engines operating between active baths [ 56 ],

in analogy to passive stochastic heat engines [ 57 – 59 ]. Other important 

questions which can be approached directly by using our general result for 

the path weight P [ x ¯ ] include the analysis of the response behavior under 

external perturbations [ 43 ] or of violations of the fluctuation-response 

relation [ 60 , 61 ] due to the inherent non-equilibrium character of active 

matter, and their potential for probing properties of the active fluctuations [

61 ]. Finally, it would be interesting to explore if our analytical methods used 

here to integrate out the simple Ornstein-Uhlenbeck fluctuations Eq. 2 can 

be extended to treat more general active fluctuations, like the ones 

considered in Ref. 62 . 
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Appendix 
Evaluation of Γ σ ( t , t ′ ) 

We here outline the calculation of Γ σ ( t , t ′ ) as the inverse of the 

differential operator 

V σ ( t , t ′ ) : = δ ( t − t ′ ) [ − τ a 2 ∂ t ′ 2 + 1 + D a D + δ ( t ′ ) ( − τ a 2 ∂ t ′ 

− τ a + 1 σ 2 ) + δ ( τ − t ′ ) ( τ a 2 ∂ t ′ + τ a ) ] , ( 35 ) 

i. e., Γ σ ( t , t ′ ) is a solution of the equation ∫  0 τ d t ′ V σ ( t , t ′ ) Γ σ ( t ′ , t 

′′ ) = δ ( t − t ′′ ) . In fact, the operator V σ ( t , t ′ ) is “ diagonal” in the time 

arguments such that Γ σ ( t , t ′ ) solves the differential equation 

[ − τ a 2 ∂ t 2 + 1 + D a D + δ ( t ) ( − τ a 2 ∂ t − τ a + 1 σ 2 ) + δ ( τ − t ) 

( τ a 2 ∂ t + τ a ) ] Γ σ ( t , t ′ ) = δ ( t − t ′ ) . ( 36 ) 
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Note that t ′ is essentially a fixed parameter here, just like D , D a , τ a and σ.

To find the solution, we follow the procedure from Ref. 18 , i. e., we compose

Γ σ ( t , t ′ ) from two parts as Γ σ ( t , t ′ ) = G ( t , t ′ ) + H σ ( t , t ′ ) . First, 

we construct the function G ( t , t ′ ) as the Green’s function solving the 

equation [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] G ( t , t ′ ) = δ ( t − t ′ ) with 

homogeneous boundary conditions G ( 0 , t ′ ) = G ( τ , t ′ ) = 0 . Second, we 

determine H σ ( t , t ′ ) as a solution of the homogeneous problem [ − τ a 2 ∂ 

t 2 + ( 1 + D a / D ) ] H σ ( t , t ′ ) = 0 such that the boundary terms are fixed

as prescribed by Eq. 36 . 

We can construct both parts, G ( t , t ′ ) and H σ ( t , t ′ ) , from the general 

solution 

Γ ( t ) = a + e λ t + a − e − λ t , λ = 1 τ a 1 + D a D , a ± = const ( 37 ) 

of the homogeneous ordinary differential equation 

[ − τ a 2 ∂ t 2 + 1 + D a D ] Γ ( t ) = 0 ( 38 ) 

associated with Eq. 36 . The Green’s function G ( t , t ′ ) is exactly the same 

as in Ref. 18 . Accordingly, its construction is completely analogous to the 

procedure outlined in Appendix B of Ref. 18 , and we only recall the result 

here, 

G ( t , t ′ ) = 1 2 τ a 2 λ e λ ( τ − | t − t ′ | ) − e λ ( τ − t − t ′ ) + e − λ ( τ − | 

t − t ′ | ) − e − λ ( τ − t − t ′ ) e λ τ − e − λ τ . ( 39 ) 

The difference between the present calculation and the one in Ref. 18 is the 

boundary term at t = 0 , which contains a contribution from the arbitrary 
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(Gaussian) initial distribution of the active fluctuations. To take both 

boundary terms in Eq. 36 into account, we make an ansatz of the form Eq. 

37 for the function H σ ( t , t ′ ) , i. e., H σ ( t , t ′ ) = a + e λ t + a − e − λ t . 

The coefficients a ± are fixed by ensuring that the full solution Γ σ ( t , t ′ ) = 

G ( t , t ′ ) + H σ ( t , t ′ ) fulfills Eq. 36 . Plugging G ( t , t ′ ) + H σ ( t , t ′ ) into 

Eq. 36 , and using [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] G ( t , t ′ ) = δ ( t − t ′ ) 

and [ − τ a 2 ∂ t 2 + 1 + D a D ] H σ ( t , t ′ ) = 0 , we are left with 

δ ( t ) [ − τ a 2 ∂ t G ( t , t ′ ) | t = 0 + a + ( 1 / σ 2 − τ a κ + ) + a − ( 1 / σ 2 

− τ a κ − ) ] + δ ( τ − t ) [ τ a 2 ∂ t G ( t , t ′ ) | t = τ + a + τ a κ + e λ τ + a 

− τ a κ − e − λ τ ] = 0 , ( 40 ) 

where κ ± = 1 ± λ τ a = 1 ± 1 + D a / D . Requiring that the terms in the two

square brackets each vanish, we can solve for the coefficients a ± , yielding 

a + = ( 1 τ a ) ( 1 − σ 2 τ a κ − ) [ e − λ ( 2 τ − t ′ ) − e − λ ( 2 τ + t ′ ) ] − κ 

− [ e − λ ( 2 τ + t ′ ) − e − λ ( 4 τ − t ′ ) ] κ + ( 1 − σ 2 τ a κ − ) − κ − ( 1 − 

σ 2 τ a κ + ) e − 2 λ τ , ( 41 ) a − = ( 1 τ a ) − ( 1 − σ 2 τ a κ + ) [ e − λ ( 2 

τ − t ′ ) − e − λ ( 2 τ + t ′ ) ] + κ + [ e − λ t ′ − e − λ ( 2 τ − t ′ ) ] κ + ( 1 − σ

2 τ a κ − ) − κ − ( 1 − σ 2 τ a κ + ) e − 2 λ τ . ( 42 ) 

Substituting these coefficients into the above ansatz for H σ ( t , t ′ ) [see 

below Eq. 39 ] and combining it with G ( t , t ′ ) from Eq. 39 according to Γ σ (

t , t ′ ) = G ( t , t ′ ) + H σ ( t , t ′ ) , we obtain the result stated in Eq. 17 of the

main text. 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
for-active-ornstein-uhlenbeck-particles/



 Irreversibility in active matter: genera... – Paper Example  Page 27

Evaluation of Γ σ ( t , t ′ ) 

We here outline the calculation of Γ σ ( t , t ′ ) as the inverse of the 

differential operator 

V σ ( t , t ′ ) : = δ ( t − t ′ ) [ − τ a 2 ∂ t ′ 2 + 1 + D a D + δ ( t ′ ) ( − τ a 2 ∂ t ′ 

− τ a + 1 σ 2 ) + δ ( τ − t ′ ) ( τ a 2 ∂ t ′ + τ a ) ] , ( 35 ) 

i. e., Γ σ ( t , t ′ ) is a solution of the equation ∫  0 τ d t ′ V σ ( t , t ′ ) Γ σ ( t ′ , t 

′′ ) = δ ( t − t ′′ ) . In fact, the operator V σ ( t , t ′ ) is “ diagonal” in the time 

arguments such that Γ σ ( t , t ′ ) solves the differential equation 

[ − τ a 2 ∂ t 2 + 1 + D a D + δ ( t ) ( − τ a 2 ∂ t − τ a + 1 σ 2 ) + δ ( τ − t ) 

( τ a 2 ∂ t + τ a ) ] Γ σ ( t , t ′ ) = δ ( t − t ′ ) . ( 36 ) 

Note that t ′ is essentially a fixed parameter here, just like D , D a , τ a and σ.

To find the solution, we follow the procedure from Ref. 18 , i. e., we compose

Γ σ ( t , t ′ ) from two parts as Γ σ ( t , t ′ ) = G ( t , t ′ ) + H σ ( t , t ′ ) . First, 

we construct the function G ( t , t ′ ) as the Green’s function solving the 

equation [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] G ( t , t ′ ) = δ ( t − t ′ ) with 

homogeneous boundary conditions G ( 0 , t ′ ) = G ( τ , t ′ ) = 0 . Second, we 

determine H σ ( t , t ′ ) as a solution of the homogeneous problem [ − τ a 2 ∂ 

t 2 + ( 1 + D a / D ) ] H σ ( t , t ′ ) = 0 such that the boundary terms are fixed

as prescribed by Eq. 36 . 

We can construct both parts, G ( t , t ′ ) and H σ ( t , t ′ ) , from the general 

solution 

Γ ( t ) = a + e λ t + a − e − λ t , λ = 1 τ a 1 + D a D , a ± = const ( 37 ) 
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of the homogeneous ordinary differential equation 

[ − τ a 2 ∂ t 2 + 1 + D a D ] Γ ( t ) = 0 ( 38 ) 

associated with Eq. 36 . The Green’s function G ( t , t ′ ) is exactly the same 

as in Ref. 18 . Accordingly, its construction is completely analogous to the 

procedure outlined in Appendix B of Ref. 18 , and we only recall the result 

here, 

G ( t , t ′ ) = 1 2 τ a 2 λ e λ ( τ − | t − t ′ | ) − e λ ( τ − t − t ′ ) + e − λ ( τ − | 

t − t ′ | ) − e − λ ( τ − t − t ′ ) e λ τ − e − λ τ . ( 39 ) 

The difference between the present calculation and the one in Ref. 18 is the 

boundary term at t = 0 , which contains a contribution from the arbitrary 

(Gaussian) initial distribution of the active fluctuations. To take both 

boundary terms in Eq. 36 into account, we make an ansatz of the form Eq. 

37 for the function H σ ( t , t ′ ) , i. e., H σ ( t , t ′ ) = a + e λ t + a − e − λ t . 

The coefficients a ± are fixed by ensuring that the full solution Γ σ ( t , t ′ ) = 

G ( t , t ′ ) + H σ ( t , t ′ ) fulfills Eq. 36 . Plugging G ( t , t ′ ) + H σ ( t , t ′ ) into 

Eq. 36 , and using [ − τ a 2 ∂ t 2 + ( 1 + D a / D ) ] G ( t , t ′ ) = δ ( t − t ′ ) 

and [ − τ a 2 ∂ t 2 + 1 + D a D ] H σ ( t , t ′ ) = 0 , we are left with 

δ ( t ) [ − τ a 2 ∂ t G ( t , t ′ ) | t = 0 + a + ( 1 / σ 2 − τ a κ + ) + a − ( 1 / σ 2 

− τ a κ − ) ] + δ ( τ − t ) [ τ a 2 ∂ t G ( t , t ′ ) | t = τ + a + τ a κ + e λ τ + a 

− τ a κ − e − λ τ ] = 0 , ( 40 ) 

where κ ± = 1 ± λ τ a = 1 ± 1 + D a / D . Requiring that the terms in the two

square brackets each vanish, we can solve for the coefficients a ± , yielding 

https://assignbuster.com/irreversibility-in-active-matter-general-framework-
for-active-ornstein-uhlenbeck-particles/
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a + = ( 1 τ a ) ( 1 − σ 2 τ a κ − ) [ e − λ ( 2 τ − t ′ ) − e − λ ( 2 τ + t ′ ) ] − κ 

− [ e − λ ( 2 τ + t ′ ) − e − λ ( 4 τ − t ′ ) ] κ + ( 1 − σ 2 τ a κ − ) − κ − ( 1 − 

σ 2 τ a κ + ) e − 2 λ τ , ( 41 ) a − = ( 1 τ a ) − ( 1 − σ 2 τ a κ + ) [ e − λ ( 2 

τ − t ′ ) − e − λ ( 2 τ + t ′ ) ] + κ + [ e − λ t ′ − e − λ ( 2 τ − t ′ ) ] κ + ( 1 − σ

2 τ a κ − ) − κ − ( 1 − σ 2 τ a κ + ) e − 2 λ τ . ( 42 ) 

Substituting these coefficients into the above ansatz for H σ ( t , t ′ ) [see 

below Eq. 39 ] and combining it with G ( t , t ′ ) from Eq. 39 according to Γ σ (

t , t ′ ) = G ( t , t ′ ) + H σ ( t , t ′ ) , we obtain the result stated in Eq. 17 of the

main text. 

Footnotes 
1 In fact, to us these seem to be the only proper choices, if we want ΔΣ to 

quantify irreversibility . For arbitrary, unrelated distributions of η i and η f , 

we would compare forward and backward paths generated under different 

experimental conditions. 
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