The ideal gas questionnaire

Environment, Nature

ASSIGN BUSTER

1. A sample of oxygen of mass 25.0 g is confined in a vessel at $0^{\circ} \mathrm{C}$ and 1000. torr. Then 6.00 g of hydrogen is pumped into the vessel at constant temperature. What will be the final pressure in the vessel (assuming only mixing with no reaction)?
2. A gaseous mixture contains 3.23 g of chloroform, CHCl 3 , and 1.22 g of methane, CH 4 . Assuming that both compounds remain as gases, what pressure is exerted by the mixture inside a $50.0-\mathrm{mL}$ metal container at $275^{\circ} \mathrm{C}$? What pressure is contributed by the CHCl 3 ?
3. A study of climbers who reached the summit of Mt. Everest without supplemental oxygen revealed that the partial pressures of O 2 and CO2 in their lungs were 35 torrs and 7. 5 torrs, respectively. The barometric pressure at the summit was 253 torr. Assume that the lung gases are saturated with moisture at a body temperature of $37^{\circ} \mathrm{C}$. Calculate the partial pressure of inert gas (mostly nitrogen) in the climbers' lungs.
4. During a collision, automobile airbags are inflated by the N2 gas formed by the explosive decomposition of sodium azide, NaN3. 2NaN3 --> $2 \mathrm{Na}+3 \mathrm{~N} 2$. What mass of sodium azide would be needed to inflate a $25.0-\mathrm{L}$ bag to a pressure of 1.40 atm at $25^{\circ} \mathrm{C}$?
5. Calculate the volume of methane, CH 4 , measured at 300 . K and 825 torr, that can be produced by the bacterial breakdown of 1.10 kg of simple sugar. C6H12O6 --> 3CH4 + 3CO2
6. We burn 12. 50 L of ammonia in 20. 00 L of oxygen at $00 .{ }^{\circ} \mathrm{C}$. What volume of nitric oxide, NO, gas can form? What volume of steam, $\mathrm{H} 2 \mathrm{O}(\mathrm{g})$, is formed? Assume that all gases are at the same temperature
and pressure and that the limiting reactant is used up. $4 \mathrm{NH} 3(\mathrm{~g})+5 \mathrm{O} 2$ $(\mathrm{g})-->4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
7. A particular tank can safely hold gas up to a pressure of 44.3 atm. When the tank contains 38. 1 g of N 2 at $25^{\circ} \mathrm{C}$, the gas exerts a pressure of 10.1 atm. What is the highest temperature to which the gas sample can be heated safely?
