
Parallel and 
distributed databases

https://assignbuster.com/parallel-and-distributed-databases/
https://assignbuster.com/parallel-and-distributed-databases/
https://assignbuster.com/


Parallel and distributed databases – Paper Example Page 2

The Integration of workstations In a distributed environment enables a more 

efficient function distribution in which application programs run on 

workstations, called application servers, while database functions are 

handled by dedicated computers, called database servers. This has led to 

the present trend in distributed system architecture, where sites are 

organized as specialized servers rather than as general- purpose computers. 

A parallel computer, or multiprocessor, is itself a distributed system made of 

a number of nodes (processors and memories) connected by a fast network 

within a cabinet. 

Distributed database technology can be naturally revised and extended to 

Implement parallel database systems, I. E. , database systems on parallel 

computers [DeWitt and Gray, 1992, Valorize, 1993]. Parallel database 

systems exploit the parallelism in data management [Boreal, 1988] in order 

to deliver high-performance and high-availability database servers at a much

lower price than equivalent mainframe computers [DeWitt and Gray, 1992. 

Evaluated, 1993]. In this paper, we present an overview of the distributed 

DB’S and parallel DB’S technologies, highlight the unique characteristics of 

each, and indicate the similarities between hem. 

This discussion should help establish their unique and complementary roles 

in data management. Underlying Principles A distributed database (DB) is a 

collection of multiple, logically interrelated databases distributed over a 

computer network. A distributed database management system (distributed 

DB’S) Is then defined as the software system that permits the management 

of the distributed database and makes the distribution ” identifying 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 3

architectural principles. The first is that the system consists of a (possibly 

empty) set of query sites and a non-empty set of data sites. 

The data sites have data outrage capability while the query sites do not. The 

latter only run the user interface routines in order to facilitate the data 

access at data sites. The second is that each site (query or data) is assumed 

to logically consist of a single, independent computer. Therefore, each site 

has its own primary and secondary storage, runs its own operating system 

(which may be the same or different at different sites), and has the 

capability to execute applications on its own. 

The sites are interconnected by a computer network rather than a 

multiprocessor configuration. The important point ere is the emphasis on 

loose interconnection between processors which have their own operating 

systems and operate independently. The database is physically distributed 

across the data sites by fragmenting and replicating the data [Cerci et al. , 

1987]. Given a relational database schema, fragmentation subdivides each 

relation into horizontal or vertical partitions. 

Horizontal fragmentation of a relation is accomplished by a selection 

operation which places each duple of the relation in a different partition 

based on a fragmentation predicate (e. G. , an Employee relation may be 

fragmented according to the location of he employees). Vertical 

fragmentation, divides a relation into a number of fragments by projecting 

over its attributes (e. G. , the Employee relation may be fragmented such 

that the MME number, MME name and Address information is in one 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 4

fragment, and MME number, Salary and Manager information is in another 

fragment). 

Fragmentation is desirable because it enables the placement of data in close

proximity to its place of use, thus potentially reducing transmission cost, and

it reduces the size of relations that are involved in user queries. Based on 

the user access patterns, each of the fragments may also be replicated. This 

is preferable when the same data are accessed from applications that run at 

a number of sites. In this case, it may be more cost-effective to duplicate the

data at a number of sites rather than continuously moving it between them. 

When the above architectural assumptions of a distributed DB’S are relaxed, 

one gets a parallel database system. The differences between a parallel DB’S

and a distributed DB’S are somewhat unclear. In particular, shared-nothing 

parallel DB’S architectures, which we discuss below, are quite similar to the 

loosely interconnected distributed systems. Parallel Dobbs exploit recent 

multiprocessor computer architectures in order to build high- performance 

and high-availability database servers at a much lower price than equivalent 

mainframe computers. 

A parallel DB’S can be defined as a DB’S implemented on a multiprocessor 

computer. This includes many alternatives ranging from the straightforward 

porting of an existing DB’S, which may require only rewriting the operating 

system interface routines, to a sophisticated combination of parallel 

processing and database system functions into a new hardware/software 

architecture. As always, we have the rotational trade-off between portability 

(to several platforms) and efficiency. 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 5

The sophisticated approach is better able to fully exploit the opportunities 

offered by a scale parallelism to magnify the raw power of individual 

components by integrating these in a complete system along with the 

appropriate parallel database software. Using standard hardware 

components is essential in order to exploit the continuing technological 

improvements with minimal delay. Then, the database software can exploit 

the three forms of parallelism inherent in daintiness application workloads. 

Inter-query parallelism enables the parallel execution of multiple queries 

generated by concurrent transactions. 

Intra-query parallelism makes the parallel execution of multiple, independent

operations (e. G. , select operations) possible within the same query. Both 

inter-query and inadequate parallelism can be obtained by using data 

partitioning, which is similar to horizontal fragmentation. Finally, with intra-

operation parallelism, the same operation can be executed as many sub- 

operations using function partitioning in addition to data partitioning. The 

set- oriented mode of database languages (e. G. SQL) provides many 

opportunities for intra-operation parallelism. 

There are a number of identifying characteristics of the distributed and 

parallel DB’S technology. 1. The distributed/parallel database is a database, 

not some “ collection” of files that can be individually stored at each node of 

a computer network. This is the distinction between a DB and a collection of 

files managed by a distributed file system. To form a DB, distributed data 

should be logically related, where the relationship is defined according to 

some structural formalism (e. G. , the relational model), and access to data 

should be at a high level via common interface. . The system has the full 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 6

functionality of a DB’S. It is neither, as indicated above, a distributed file 

system, nor is it a transaction processing system. Transaction processing is 

only one of the functions provided by such a system, which also provides 

functions such as query processing, structured organization of data, and 

others that transaction processing systems do not necessarily deal with. 2 3. 

The distribution (including fragmentation and replication) of data across 

multiple site/processors is not visible to the users. This is called 

transparency. 

The strutted/parallel database technology extends the concept of data 

independence, which is a central notion of database management, to 

environments where data are distributed and replicated over a number of 

machines connected by a network. This is provided by several forms of 

transparency: network (and, therefore, distribution) transparency, replication

transparency, and fragmentation transparency. Transparent access means 

that users are provided with a single logical image of the database even 

though it may be physically distributed, enabling them to access the 

distributed database as if it were a centralized one. 

In its ideal form, full transparency would imply a query language interface to 

the distributed/parallel DB’S which is no different from that of a centralized 

DB’S. Transparency concerns are more pronounced in the case of distributed

Dobbs. There are a two fundamental reasons for this. First of all, the 

multiprocessor system on which a parallel DB’S is implemented is controlled 

by a single operating system. Therefore, the operating system can be 

structured to implement some aspects of DB’S functionality thereby 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 7

providing some degree of transparency. Secondly, languages which can 

provide further transparency. 

In a distributed DB’S, data and the applications that access that data can be 

localized at the same site, eliminating (or reducing) the need for remote data

access that is typical of teleprocessing-based timesharing systems. 

Furthermore, since each site handles fewer applications and a smaller 

portion of the database, contention for resources and for data access can be 

reduced. Finally, the inherent parallelism of distributed systems provides the 

possibility of inter-query parallelism and intra- query parallelism. If the user 

access to the distributed database consists only of querying (I. . Read-only 

access), then provision of inter-query and intra-query parallelism would 

imply that as much of the database as possible should be replicated. 

However, since most database accesses are not read-only, the mixing of 

read and update operations requires support for distributed transactions (as 

discussed in a later section). Higher performance is probably the most 

important objective of parallel Dobbs. In these systems, higher performance 

can be obtained through several complementary solutions: database-

oriented operating system support, parallelism, optimization, and load 

balancing. 

Having the operating system unstrained and “ aware” of the specific 

database requirements (e. G. , buffer management) simplifies the 

implementation of low-level database functions and therefore decreases 

their cost. For instance, the cost of a message can be significantly reduced to

a few hundred instructions by specializing the communication protocol. 

Parallelism can increase throughput (using inter-query parallelism) and 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 8

decrease transaction response times (using intra-query and intra- operation 

parallelism). 

Distributed and parallel Dobbs are intended to improve reliability, since they 

have replicated components and thus eliminate single points of failure. The 

failure of a single site or processor, or the failure of a communication link 

which makes one or more sites unreachable, is not sufficient to bring down 

the entire system. This means that although some of the data may be 

unreachable, with proper system design users may be permitted to access 

other parts of the distributed database. The “ proper system design” comes 

in the form of support for distributed transactions. 

Providing transaction support requires the implementation of distributed 

concurrency control and distributed reliability (commit and recovery) 

protocols, which are reviewed in a later section. In a distributed or parallel 

environment, it should be easier to accommodate increasing database sizes 

or increasing performance demands. Major system overhauls are seldom 

necessary; expansion can usually be handled by adding more processing and

storage power to the system. Ideally, a parallel DB’S (and to a lesser degree 

a distributed DB’S) should demonstrate two advantages: linear scalpel and 

linear speedup. 

Linear scalpel refers to a sustained performance for a linear increase in both 

database size and processing and storage power. Linear speedup refers too 

linear increase in 3 reference for a constant database size, and a linear 

increase in processing and storage power. Furthermore, extending the 

system should require minimal re- microprocessors and workstations make it

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 9

more economical to put together a system of smaller computers with the 

equivalent power of a single big machine. Many commercial distributed 

Dobbs operate on minicomputers and workstations in order to take 

advantage of their favorable price/performance characteristics. 

The current reliance on workstation technology has come about because 

most of the commercial distributed Dobbs operate within local area networks

for which the workstation genealogy is most suitable. The emergence of 

distributed Dobbs that run on wide- area networks may increase the 

importance of mainframes. On the other hand, future distributed Dobbs may 

support hierarchical organizations where sites consist of clusters of 

computers communicating over a local area network with a high-speed 

backbone wide area network connecting the clusters. 

Distributed and Parallel Database Technology Distributed and parallel Dobbs 

provide the same functionality as centralized Dobbs except in an 

environment where data is distributed across the sites on a computer 

network or across the nodes of a multiprocessor system. As discussed above,

the users are unaware of data distribution. Thus, these systems provide the 

users with a logically integrated view of the physically distributed database. 

Maintaining this view places significant challenges on system functions. We 

provide an overview of these new challenges in this section. We assume 

familiarity with basic database management techniques. 

Architectural Issues There are many possible distribution alternatives. The 

currently popular client/server architecture [Airfoil et al. , 1994], where a 

number of client machines access a single database server, is the most 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 10

straightforward one. In these systems, which can be called 

multiple-client/single-server, the database management problems are 

considerably simplified since the database is stored on a single server. The 

pertinent issues relate to the management of client buffers and the caching 

of data and (possibly) locks. The data management is done centrally at the 

single server. 

A more distributed and more flexible architecture is the 

multiple-client/multiple server architecture where the database is distributed

across multiple servers which have to communicate with each other in 

responding to user queries and in executing ramifications. Each client 

machine has a “ home” server to which it directs user requests. The 

communication of the servers among themselves is transparent to the users.

Most current database management systems implement one or the other 

type of the client-server architectures. A truly distributed DB’S does not 

distinguish between client and server machines. 

Ideally, each site can perform the functionality of a client and a server. Such 

architectures, called peer-to-peer, require sophisticated protocols to manage

the data distributed across multiple sites. The complexity of required 

software has allayed the offering of peer-to-peer distributed DB’S products. 

Parallel system architectures range between two extremes, the shared-

nothing and the shared- memory architectures. A useful intermediate point is

the shared-disk architecture. In memory and disk unit(s). Thus, each node 

can be viewed as a local site (with its own database and software) in a 

distributed database system. 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 11

The difference between shared-nothing parallel Dobbs and distributed Dobbs

is basically one of implementation platform, therefore most solutions 

designed for distributed databases may be re-used in parallel Dobbs. In 

addition, shared-nothing architecture has three main virtues: cost, 

extensibility, and availability. On the other hand, it suffers from higher 

complexity and (potential) load balancing problems. 4 Examples of shared-

nothing parallel database systems include the Dearest’s DB and Tandem’s 

Nonstop products as well as a number of prototypes such as BUBBY [Boreal 

et al. 1990], DEEDS [DEEDS, 1990], GAMMA [Dewitt et al. , 1990], GRACE 

[Fishing et al. , 1986], PRISMS [Papers et al. , 1992] and ARBOR [Lone et al. , 

1989]. In the shared-memory approach, any processor has access to any 

memory module or sis unit through a fast interconnect (e. G. , a high-speed 

bus or a cross-bar switch). Several new mainframe designs such as the 

BAMBINI or Bull’s DIPS, and symmetric multiprocessors such as Sequent and 

Encore, follow this approach. Shared-memory has two strong advantages: 

simplicity and load balancing. These are offset by three problems: cost, 

limited extensibility, and low availability. 

Examples of shared-memory parallel database systems include SPARS 

[Stockbroker et al. , 1988], DB’S [Bergsten et al. , 1991], and Volcano 

[Garage, 1990], as well as portions of major Orders on shareholders 

multiprocessors. In a sense, the implementation of DB on an BAMBINI with 6 

processors was the first example. All the shared-memory commercial 

products (e. G. , INGRESS and ORACLE) today exploit inter-query parallelism 

only (I. E. , no intra-query parallelism). In the shared-disk approach, any 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 12

processor has access to any disk unit through the interconnect, but exclusive

(non-shared) access to its main memory. 

Each processor can then access database pages on the shared disk and copy

them into its own cache. To avoid conflicting accesses to the same pages, 

global locking and protocols for the maintenance of cache coherency are 

needed. Shared- disk has a number of advantages: cost, extensibility, load 

balancing, availability, and easy migration from unprocessed systems. On 

the other hand, it suffers from higher complexity and potential performance 

problems. Examples of shared-disk parallel DB’S include VIM’S AIMS, VS. 

Data Shaman product and DECK’S FAX DB’S and 3rd products. 

The implementation of ORACLE on Deck’s Vacillates and INCISE computers 

also uses the shared-disk approach since it requires minimal extensions of 

the READS kernel. Note that all these systems exploit inter-query parallelism 

only. Query Processing and Optimization Query processing is the process by 

which a declarative query is translated into low- level data manipulation 

operations. SQL is the standard query language that is supported in current 

Dobbs. Query optimization refers to the process by which the “ best” 

execution strategy for a given query is found from among a set of 

alternatives. 

In centralized Dobbs, the process typically involves two steps: query 

translates it into one expressed in relational algebra. In the process, the 

query is analyzed semantically so that incorrect queries are detected and 

rejected as easily as Seibel, and correct queries are simplified. Simplification 

involves the elimination of redundant predicates which may be introduced as

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 13

a result of query modification to deal with views, security enforcement and 

semantic integrity control. The simplified query is then restructured as an 

algebraic query. For a given SQL query, there are more than one possible 

algebraic queries. 

Some of these algebraic queries are “ better” than others. The quality of an 

algebraic query is defined in terms of expected performance. The traditional 

procedure is to obtain an initial algebraic query by reinstating the predicates 

and the target statement into relational operations as they appear in the 

query. This initial algebraic query is then transformed, using algebraic 

transformation rules, into other algebraic queries until the “ best” one is 

found. The “ best” algebraic query is determined according to a cost function

which calculates the cost of executing the query according to that algebraic 

specification. 

This is the process of query optimization. In distributed Dobbs, two more 

steps are involved between query decomposition and query optimization: 

data localization and global query optimization. The input to data localization

is the initial algebraic query generated by the query decomposition step. The

initial algebraic query is specified on global relations irrespective of their 

fragmentation or distribution. 5 The main role of data localization is to 

localize the query data using data distribution information. 

In this step, the fragments which are involved in the query are determined 

and the query is transformed into one that operates on fragments rather 

than global relations. As indicated earlier, fragmentation is defined through 

fragmentation rules which can be expressed as relational operations 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 14

(horizontal argumentation by selection, vertical fragmentation by projection).

A distributed relation can be reconstructed by applying the inverse of the 

fragmentation rules. This is called a localization program. The localization 

program for a horizontally (vertically) fragmented query is the union Onion) 

of the fragments. 

Thus, during the data localization step each global relation is first replaced 

by its localization program, and then the resulting fragment query is 

simplified and restructured to produce another “ good” query. Simplification 

and restructuring may be done according to the same rules used in the 

decomposition step. As in the decomposition step, the final fragment query 

is generally far from optimal; the process has only eliminated “ bad” 

algebraic queries. The input to the third step is a fragment query, that is, an 

algebraic query on fragments. 

The goal of query optimization is to find an execution strategy for the query 

which is close to optimal. Remember that finding the optimal solution is 

computationally intractable. An execution strategy for a distributed query 

can be described with relational algebra operations and communication 

primitives (send/receive operations) for transferring data between sites. The 

previous layers have already optimized the query -? for example, by 

eliminating redundant expressions. However, this optimization is 

independent of fragment characteristics such as cardinalities. In addition, 

communication operations are not yet specified. 

By permuting the ordering of operations within one fragment query, many 

equivalent “ best” one among candidate plans examined by the optimizer 1 .

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 15

The query optimizer is usually seen as three components: a search space, a 

cost model, and a search strategy. The search space is the set of alternative 

execution plans to represent the input query. These plans are equivalent, in 

the sense that they yield the same result but they differ on the execution 

order of operations and the way these operations are implemented. The cost 

model predicts the cost of a given execution plan. 

To be accurate, the cost model must have accurate knowledge about the 

parallel execution environment. The search strategy explores the search 

space and selects the best plan. It defines which plans are examined and in 

which order. In a distributed environment, the cost function, often defined in 

terms of time units, refers to computing resources such as disk space, disk 

I/So, buffer space, CPU cost, immunization cost, and so on. Generally, it is a 

weighted combination of 1/0, CUP], and communication costs. Nevertheless, 

a typical simplification made by distributed Dobbs is to consider 

communication cost as the most significant factor. 

This is valid for wide area networks, where the limited bandwidth makes 

communication much more costly than it is in local processing. To select the 

ordering of operations it is necessary to predict execution costs of 

alternative candidate orderings. Determining execution costs before query 

execution (I. E. , static optimization) is based on fragment tactics and the 

formulas for estimating the cardinalities of results of relational operations. 

Thus the optimization decisions depend on the available statistics on 

fragments. 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 16

An important aspect of query optimization is Join ordering, since 

permutations of the Joins within the query may lead to improvements of 

several orders of magnitude. One basic technique for optimizing a sequence 

of distributed join operations is through use of the Seminole operator. The 

main value of the Seminole in a distributed system is to reduce the size of 

the Join operands and thus the communication cost. However, more recent 

techniques, which consider local processing costs as well as communication 

costs, do not use sessions because they might increase local processing 

costs. 

The output of the query optimization layer is an optimized algebraic query 

with communication operations included on fragments. Parallel query 

optimization exhibits similarities with distributed query processing. It takes 

advantage of both intra-operation parallelism, which was discussed earlier, 

and inter-operation parallelism. 1 The difference between an optimal plan 

and the best plan is that the optimizer does to, because of computational 

intractability, examine all of the possible plans. 6 Intra-operation parallelism 

is achieved by executing an operation on several nodes of a multiprocessor 

machine. 

This requires that the operands have been previously partitioned, I. E. , 

horizontally fragmented, across the nodes. The way in which a base relation 

is partitioned is a matter of physical design. Typically, partitioning is 

performed by applying a hash function on an attribute of the relation, which 

will often be the Join attribute. The set of nodes where a relation is stored is 

called its e the home of its operands in order for the operation to access its 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 17

operands. For binary operations such as Join, this might imply repartitioning 

one of the operands. 

The optimizer might even sometimes find that repartitioning both the 

operands is useful. Parallel optimization to exploit intra-operation parallelism

can make use of some of the techniques devised for distributed databases. 

Inter-operation parallelism occurs when two or more operations are executed

in parallel, either as a outflow or independently. We designate as outflow the

form of parallelism induced by pipelining. Independent parallelism occurs 

when operations are executed at the same time or in arbitrary order. 

Independent parallelism is possible only when the operations do not involve 

the same data. Concurrency Control Whenever multiple users access (read 

and write) a shared database, these accesses need to be synchronized to 

ensure database consistency. The synchronization is achieved by means of 

concurrency control algorithms which enforce a correctness criterion such as

serviceability. User accesses are encapsulated as transactions [Gray, 1981], 

whose operations at the lowest level are a set of read and write operations to

the database. 

Concurrency control algorithms enforce the isolation property of transaction 

execution, which states that the effects of one transaction on the database 

are isolated from other transactions until the first completes its execution. 

The most popular concurrency control algorithms are locking-based. In such 

schemes, a lock, in either shared or exclusive mode, is placed on some unit 

of storage (usually a page) whenever a transaction attempts to access it. 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 18

These locks are placed according to lock compatibility rules such that read-

write, write-read, and write-write inflicts are avoided. 

It is a well known theorem that if lock actions on behalf of concurrent 

transactions obey a simple rule, then it is possible to ensure the 

serviceability of these transactions: “ No lock on behalf of a transaction 

should be set once a lock previously held by the transaction is released. ” 

This is known as two- phase locking [Gray, 1979], since transactions go 

through a growing phase when they obtain locks and a shrinking phase when

they release locks. In general, releasing of locks prior to the end of a 

transaction is problematic. 

Thus, most of the locking-based nonoccurrence control algorithms are strict 

in that they hold on to their locks until the end of the transaction. In 

distributed Dobbs, the challenge is to extend both the serviceability 

argument and the concurrency control algorithms to the distributed 

execution environment. In these systems, the operations of a given 

transaction may execute at multiple sites where they access data. In such a 

case, the serviceability argument is more difficult to specify and enforce. The

complication is due to the fact that the serialization order of the same set of 

transactions may be different at different sites. 

Therefore, the execution of a set of distributed transactions is serialize if and

only if 1 . The execution of the set of transactions at each site is serialize, 

and 2. The serialization orders of these transactions at all these sites are 

identical. Distributed concurrency control algorithms enforce this notion of 

global serviceability. In locking- centralized locking, primary copy locking, 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 19

and distributed locking algorithm. In centralized locking, there is a single lock

table for the entire distributed database. This lock table is placed, at one of 

the sites, under the control of a single lock manager. 

The lock manager is responsible 7 for setting and releasing locks on behalf of

transactions. Since all locks are managed at one site, this is similar to 

centralized concurrency control and it is straightforward to enforce the global

serviceability rule. These algorithms are simple to implement, but suffer from

two problems. The central site may become a bottleneck, both because of 

the amount of work it is expected to perform and because of the traffic that 

is generated around it; and the system may be less reliable since the failure 

or inaccessibility of the central site would cause system unavailability. 

Primary copy locking is a concurrency control algorithm that is useful in 

replicated databases where there may be multiple copies of a data item 

stored at different sites. One of the copies is designated as a primary copy 

and it is this copy that has to be locked in order to access that item. The set 

of primary copies for each data item is known to all the sites in the 

distributed system, and the lock requests on behalf of transactions are 

directed to the appropriate primary copy. If the distributed database is not 

replicated, copy locking degenerates into a distributed locking algorithm. 

Primary copy locking was proposed for the prototype distributed version of 

INGRESS. In distributed (or decentralized) locking, the lock management 

duty is shared by all the sites in the system. The execution of a transaction 

involves the participation and coordination of lock managers at more than 

one site. Locks are obtained at each site where the transaction accesses a 

https://assignbuster.com/parallel-and-distributed-databases/



Parallel and distributed databases – Paper Example Page 20

data item. Distributed locking algorithms do not have the overhead of 

centralized locking ones. However, both the communication overhead to 

obtain all the locks, and the complexity of the algorithm are greater. 

Distributed locking algorithms are used in System R* and in Nonstop SQL. 

One side effect of all locking-based concurrency control algorithms is that 

they cause deadlocks. The detection and management of deadlocks in a 

distributed system is difficult. Nevertheless, the relative simplicity and better

performance of locking algorithms make them more popular than 

alternatives such as timestamp-based algorithms or optimistic concurrency 

control. Timestamp-based algorithms execute the conflicting operations of 

transactions according to their timestamps which are assigned when the 

transactions are accepted. 

Optimistic concurrency control algorithms work from the premise that 

conflicts among transactions are rare and proceed with executing the 

transactions up to their termination at which point a validation is performed. 

If the validation indicates that serviceability would be compromised by the 

successful completion of that particular transaction, then it is aborted and 

restarted. Reliability Protocols We indicated earlier that distributed Dobbs 

are potentially more reliable because there are multiples of each system 

component, which eliminates single points of failure. 

https://assignbuster.com/parallel-and-distributed-databases/


	Parallel and distributed databases

