
Binary tree

https://assignbuster.com/binary-tree/
https://assignbuster.com/


Binary tree – Paper Example Page 2

Binary Trees Page: 1 by Nick Parlante This article introduces the basic 

concepts of binary trees, and then works through a series of practice 

problems with solution code in C/C++ and Java. Binary trees have an elegant

recursive pointer structure, so they are a good way to learn recursive pointer

algorithms. Contents Section 1 . Binary Tree Structure a quick introduction to

binary trees and the code that operates on them Section 2. Binary Tree 

Problems practice problems in increasing order of difficulty Section 3. C 

Solutions solution code to the problems for C and C++ programmers Section 

4. 

Java versions how binary trees work in Java, with solution code Stanford CS 

Education Library #110 This is article #110 in the Stanford CS Education 

Library. This and other free CS materials are available at the library 

(http://cslibrary. stanford. edu/). That people seeking education should have 

the opportunity to find it. This article may be used, reproduced, excerpted, 

or sold so long as this paragraph is clearly reproduced. Copyright 2000-

2001 , Nick Parlante, nick.[email protected]stanford. edu. Related CSLibrary 

Articles Linked List Problems (http://cslibrary. stanford. du/105/) a large 

collection of linked ist problems using various pointer techniques (while this 

binary tree article concentrates on recursion) Pointer and Memory 

(http://cslibrary. stanford. edu/102/) basic concepts of pointers and memory 

The Great Tree-List Problem (http:// cslibrary. stanford. edu/109/) a great 

pointer recursion problem that uses both trees and lists Introduction To 

Binary Trees Section 1 A binary tree is made of nodes, where each node 

contains a " left" pointer, a " right" pointer, and a data element. The " root" 

pointer points to the topmost node in the tree. 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 3

The left and right pointers recursively point to smaller " subtrees" on either 

side. A null pointer represents a binary tree with no elements the empty 

tree. The formal recursive definition is: a binary tree is either empty 

(represented by a null pointer), or is made of a single node, where the left 

and right pointers (recursive definition ahead) each point to a binary tree. 

http://cslibrary. stanford. edu/110/ BinaryTrees. html Page: 2 A " binary 

search tree" (BST) or " ordered binary tree" is a type of binary tree where the

nodes are arranged in order: for each node, all elements in its left subtree 

are less-or-equal to the node 0. 

The tree shown above is a binary search tree the " root" ode is a 5, and its 

left subtree nodes (1, 3, 4) are 5. Recursively, each of the subtrees must also

obey the binary search tree constraint: in the (1, 3, 4) subtree, the 3 is the 

root, the 1 3. Watch out for the exact wording in the problems a " binary 

search tree" is different from a " binary tree". The nodes at the bottom edge 

of the tree have empty subtrees and are called " leaf" nodes (1, 4, 6) while 

the others are " internal" nodes (3, 5, 9). Binary Search Tree Niche Basically, 

binary search trees are fast at insert and lookup. 

The next section presents the code for these two algorithms. On average, a 

binary search tree algorithm can locate a node in an N node tree in order 

lg(N) time (log base 2). Therefore, binary search trees are good for " 

dictionary" problems where the code inserts and looks up information 

indexed by some key. The lg(N) behavior is the average case it's possible for 

a particular tree to be much slower depending on its shape. Strategy Some 

of the problems in this article use plain binary trees, and some use binary 

search trees. In any case, the problems concentrate on the combination of 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 4

pointers and recursion. See the articles linked above for pointer articles that 

do not mphasize recursion. ) For each problem, there are two things to 

understand... The node/pointer structure that makes up the tree and the 

code that manipulates it The algorithm, typically recursive, that iterates over

the tree When thinking about a binary tree problem, it's often a good idea to 

draw a few little trees to think about the various cases. http://cslibrary. 

stanford. edu/110/ BinaryTrees. html Page: 3 Typical Binary Tree Code in 

C/C++ As an introduction, we'll look at the code for the two most basic 

binary search tree operations lookup() and insert(). 

The code here works for C or C++. Java programers can read the discussion 

here, and then look at the Java versions in Section 4. In C or C ++, the binary

tree is built with a node type like this... struct node { int data; struct node* 

left; struct node* right; } Lookup() the target. The basic pattern of the 

lookup() code occurs in many recursive tree algorithms: deal with the base 

case where the tree is empty, deal with the current node, and then use 

recursion to deal with the subtrees. If the tree is a binary search tree, there 

is often some sort of less-than test on the node to decide if the recursion 

should go left or right. 

Given a binary tree, return true if a node with the target data is found in the 

tree. Recurs down the tree, chooses the left or right branch by comparing 

the target to each node. static int lookup(struct node* node, int target) { // 1.

Base case = empty tree // in that case, the target is not found so return false

if (node = NULL) { return(false); } else { // 2. see if found here if (target = 

node-; data) return(true); else { // 3. otherwise recur down the correct 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 5

subtree if (target ; node- ; data) return(lookup(node-; left, target)); else 

return(lookup(node-; right, target)); } } } 

The lookup() algorithm could be written as a while-loop that iterates down 

the tree. Our version uses recursion to help prepare you for the problems 

below that require recursion. Pointer Changing Code There is a common 

problem with pointer intensive code: what if a function needs to change one 

of the pointer parameters passed to it? For example, the insert() function 

below may want to change the root pointer. In C and C++, one solution uses 

pointers- to-pointers (aka " reference parameters"). 

That's a fine technique, but here we will use the simpler technique that a 

function that wishes to change a pointer passed to it ill return the new value 

of the pointer to the caller. The caller is responsible for using the new value. 

Suppose we have a changeo function http:// cslibrary. stanford. edu/110/ 

BinaryTrees. html Page: 4 that may change the the root, then a call to 

changeo will look like this... // suppose the variable " root" points to the tree 

root = change(root); We take the value returned by change(), and use it as 

the new value for root. 

This construct is a little awkward, but it avoids using reference parameters 

which confuse some C and C++ programmers, and Java does not have 

reference parameters at all. This allows us to ocus on the recursion instead 

of the pointer mechanics. (For lots of problems that use reference 

parameters, see CSLibrary #105, Linked List Problems, http:// cslibrary. 

stanford. edu/105/). Insert() Insert() given a binary search tree and a 

number, insert a new node with the given number into the tree in the correct

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 6

place. The insert() code is similar to lookup(), but with the complication that 

it modifies the tree structure. 

As described above, insert() returns the new tree pointer to use to its caller. 

Calling insert() with the number 5 on returns the tree... 2 / 1 / 5 The solution 

shown here introduces a newNode() helper unction that builds a single node.

The base-case/recursion structure is similar to the structure in lookup() each 

call checks for the NULL case, looks at the node at hand, and then recurs 

down the left or right subtree if needed. Helper function that allocates a new 

node with the given data and NULL left and right pointers. truct node* 

NewNode(int data) { struct node* node = new(struct node); // " new" is like "

malloc" node-> data = data; node-> left = NULL; node-> right = NULL; 

return(node); } 10 Give a binary search tree and a number, inserts a new 

node with the given number in the correct place in the tree. Returns the new

root pointer which the caller should then use (the standard trick to avoid 

using reference parameters). struct node* insert(struct node* node, int data)

{ http://cslibrary. stanford. edu/110/ BinaryTrees. html Page: 5 // 1. If the 

tree is empty, return a new, single node if (node = NULL) 

{ return(newNode(data)); } else { // 2. 

Otherwise, recur down the tree if (data data) node-> left = insert(node-> 

left, data); else node-> right = insert(node-> right, data); return(node); // 

return the (unchanged) node pointer } } The shape of a binary tree depends 

very much on the order that the nodes are nserted. In particular, if the nodes

are inserted in increasing order (1, 2, 3, 4), the tree nodes Just grow to the 

right leading to a linked list shape where all the left pointers are NULL. A 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 7

similar thing happens if the nodes are inserted in decreasing order (4, 3, 2, 

1). The linked list shape defeats the lg(N) performance. 

We will not address that issue here, instead focusing on pointers and 

recursion. Section 2 Binary Tree Problems Here are 14 binary tree problems 

in increasing order of difficulty. Some of the problems operate on binary 

search trees (aka " ordered binary trees") while others ork on plain binary 

trees with no special ordering. The next section, Section 3, shows the 

solution code in C/C*+. Section 4 gives the background and solution code in 

Java. The basic structure and recursion of the solution code is the same in 

both languages the differences are superficial. 

Reading about a data structure is a fine introduction, but at some point the 

only way to learn is to actually try to solve some problems starting with a 

blank sheet of paper. To get the most out of these problems, you should at 

least attempt to solve them before looking at the solution. Even if your 

olution is not quite right, you will be building up the right skills. With any 

pointer- based code, it's a good idea to make memory drawings of a a few 

simple cases to see how the algorithm should work. This is a very basic 

problem with a little pointer manipulation. You can skip this problem if you 

are already comfortable with pointers. ) Write code that builds the following 

little 1-2-3 binary search tree... 2/ 1 3 Write the code in three different 

ways... a: by calling newNode() three times, and using three pointer 

variables b: by calling newNode() three times, and using only one ointer 

variable c: by calling insert() three times passing it the root pointer to build 

up the tree (In Java, write a buildl 230 method that operates on the receiver 

to change it to be the 1-2-3 tree with the given coding constraints. See 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 8

Section 4. struct node* buildi 230 { 2. size() Page: 6 This problem 

demonstrates simple binary tree traversal. Given a binary tree, count the 

number of nodes in the tree. int size(struct node* node) { 3. maxDepth() 

Given a binary tree, compute its " maxDepth" the number of nodes along the

longest path from the root node down to the farthest leaf node. The 

maxDepth of the empty tree is O, the maxDepth of the tree on the first page 

is 3. int maxDepth(struct node* node) { 4. minValue() Given a non-empty 

binary search tree (an ordered binary tree), return the minimum data value 

found in that tree. 

Note that it is not necessary to search the entire tree. A maxValue() function 

is structurally very similar to this function. This can be solved with recursion 

or with a simple while loop. int minValue(struct node* node) { 5. printTree() 

Given a binary search tree (aka an " ordered binary tree"), iterate over the 

nodes to print them out in increasing order. So the tree... 1 35 Produces the 

output " 1 23 4 5". This is known as an " inorder" traversal of the tree. Hint: 

For each node, the strategy is: recur left, print the node data, recur right. 

void printTree(struct node* node) { 6. rintpostorder() Given a binary tree, 

print out the nodes of the tree according to a bottom-up the node itself is 

printed, and each left subtree is printed before the right subtree. So the 

tree... Produces the output " 1 3 2 5 4". The description is complex, but the 

code is simple. This is the sort of bottom-up traversal that would be used, for

example, to evaluate n expression tree where a node is an operation like '+' 

and its subtrees are, recursively, the two subexpressions for the 

http://cslibrary. stanford. edu/110/ page: 7 void printpostorder(struct node* 

node) { 7. asPathSum() We'll define a " root-to-leaf path" to be a sequence of

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 9

nodes in a tree starting with the root node and proceeding downward to a 

leaf (a node with no children). We'll say that an empty tree contains no root-

to-leaf paths. So for example, the following tree has exactly four root-to-leaf 

paths: 5/ 4/ 11 134 1 Root-to-leaf paths: path 1: 54 11 7 path 2: 54 11 2 path

3: 58 13 path 4: 584 1 For his problem, we will be concerned with the sum of

the values of such a path for example, the sum of the values on the 5-4-11-7 

path is 5+4+ 11 +7 = 27. 

Given a binary tree and a sum, return true if the tree has a root-to-leaf path 

such that adding up all the values along the path equals the given sum. 

Return false if no such path can be found. (Thanks to Owen Astrachan for 

suggesting this problem. ) int hasPathSum(struct node* node, int sum) { 8. 

printPaths() Given a binary tree, print out all of its root-to-leaf paths as 

defined above. This problem is a little harder than it looks, since the " path 

so far" needs to be ommunicated between the recursive calls. 

Hint: In C, C++, and Java, probably the best solution is to create a recursive 

helper function printPathsRecur(node, int path[], int pathLen), where the 

path array communicates the sequence of nodes that led up to the current 

call. Alternately, the problem may be solved bottom-up, with each node 

returning its list of paths. This strategy works quite nicely in Lisp, since it can

exploit the built in list and mapping primitives. (Thanks to Matthias Felleisen 

for suggesting this problem. ) Given a binary tree, print out all of its root-to-

leaf paths, one per line. oid printpaths(struct node* node) { 9. irror() Change 

a tree so that the roles of the left and right pointers are swapped at every 

node. So the tree... 4 / 2 5 / http://cslibrary. stanford. edu/110/ BinaryTrees. 

html Page: 8 3 is changed to... 4/ 5 2/3 1 The solution is short, but very 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 10

recursive. As it happens, this can be accomplished without changing the root

node pointer, so the return-the- new-root construct is not necessary. 

Alternately, if you do not want to change the tree nodes, you may construct 

and return a new mirror tree based on the original tree. void mirror(struct 

node* node) { 0. oubleTree() For each node in a binary search tree, create a 

new duplicate node, and insert the duplicate as the left child of the original 

node. The resulting tree should still be a binary search tree. So the tree... 2/ 

1 3 is changed to... 2/23//1 3/1 As with the previous problem, this can be 

accomplished without changing the root node pointer. void doubleTree(struct

node* node) { 1 1 . sameTree() Given two binary trees, return true if they 

are structurally identical they are made of nodes with the same values 

arranged in the same way. (Thanks to Julie Zelenski for suggesting this 

problem. nt sameTree(struct node* a, struct node* b) { 12. countTrees() This

is not a binary tree programming problem in the ordinary sense it's more of a

math/combinatorics recursion problem that happens to use binary trees. 

(Thanks to Jerry Cain for suggesting this problem. ) Suppose you are building

an N node binary search tree with the values 1 .. N. How many structurally 

different binary search trees are there that store those values? Write a 

recursive function that, given the number of distinct values, computes the 

number of structurally unique binary search trees that store those values. 

For example, http://cslibrary. tanford. edu/110/ Page: 9 countTrees(4) should 

return 14, since there are 14 structurally unique binary search trees that 

store 1, 2, 3, and 4. The base case is easy, and the recursion is short but 

dense. Your code should not construct any actual trees; it's Just a counting 

problem. int countTrees(int numKeys) { This background is used by the next 

https://assignbuster.com/binary-tree/



Binary tree – Paper Example Page 11

two problems: Given a plain binary tree, examine the tree to determine if it 

meets the requirement to be a binary search tree. 

https://assignbuster.com/binary-tree/


	Binary tree

