Time value of money essay

Finance

ASSIGN BUSTER

1. In two to three paragraphs, explain why the concept of present value is so important for corporate finance and is often the very first topic taught in any finance class. Answer: Concept of present value basically means that the money received today is worth more than the same sum received in the future i. e. Money has a time value therefore money that is to be received in the future needs to be discounted at the present value using the appropriate discount or interest rate.

This is an important concept in finance. If a capital investment is to be justified, it needs to earn at least a minimum amount of profit, so the return compensates the investor for both the amount invested and also the length of time before the profits are made. Another reason why the future income needs to be discounted at the present value is the impact of inflation.

In most recent years prices have been seen rising as a result of inflation. Therefore funds received today will buy more than the same amount a year later, as prices will have risen in the meantime. The funds are subject to a loss of purchasing power over time. 2. Calculation of Future Value: Formula for the calculation of Future Value is: $F V=P V \times(1+i)$ t Where $\quad \mathrm{FV}$ is the future value after t periodsPV is the present or initial value.
i is the rate of interest per period. t is the time in years Using this formula in the question: a) $\quad \$ 500$ if invested for five years at a 5% interest rate $\mathrm{FV}=$ $P V \times(1+i) t F V=500 \times(1+0.05) 5 F V=500 \times 1.276 F V=\$ 638 \mathrm{~b})$ $\$ 700$ if invested for three years at a 2% interest rate $F V=P V \times(1+i) t F V=$ $700 \times(1+0.02) 3 \mathrm{FV}=700 \times 1.061 \mathrm{FV}=\$ 742.7 \mathrm{c}) \quad \$ 1200$ if invested
for seven years at an 11% interest rate $F V=P V \times(1+i) t F V=1200 \times(1+$ 0.11) $7 \mathrm{FV}=1200 \times 2$.
$076 \mathrm{FV}=\$ 2491.2 \mathrm{~d}) \quad \$ 400$ if invested for ten years with a 0\% interest rate Since the rate of Interest is 0%, the future value will be equal to the present value i. e. \$400 3. Calculation of Present Value: Formula for the calculation of Present Value is: $\mathrm{PV}=\mathrm{FV} \div(1+\mathrm{i}) \mathrm{t}$ Where PV is the present or initial valueFV is the future value after t periodsi is the rate of interest per period. t is the time in years Using this formula in the question: a) $\$ 2400$ to be received three years from now with a 4% discount rate $P V=F V \div(1+i) t P V=2,400 \div(1+0.04) 3 P V=2,400 \div$ 1. $125 \mathrm{PV}=\$ 2,133$.

33 b) $\$ 900$ to be received five years from now with a 10% interest rate PV $=\mathrm{FV} \div(1+\mathrm{i}) \mathrm{tPV}=900 \div(1+0.1) 5 \mathrm{PV}=900 \div 1.610 \mathrm{PV}=\$ 559 \mathrm{c})$ $\$ 1150$ to received two years from now with a 24% interest rate $P V=F V \div(1$ $+\mathrm{i}) \mathrm{t} P V=1,150 \div(1+0.24) 2 \mathrm{PV}=1,150 \div 1.538 \mathrm{PV}=\$ 747.72$
$\$ 45,000$ to be received eight years from now with a 7% interest rate $\mathrm{PV}=$ $F V \div(1+i) t P V=\$ 45,000 \div(1+0.07) 8 P V=\$ 45,000 \div 1$.

718 PV $=\$ 26,1934 . \quad$ Suppose you are to receive a stream of annual payments (also called an `annuity`) of $\$ 7000$ every year for three years starting this year. The discount rate is 6%. What is the present value of these three payments? Answer: The formula for Present Value of Annuity is: PV = Payment per Period $\times(1-(1+i)$-t)i Where $P V$ is the present of the annuityi is the rate of interest per period. t is the time in yearsThis formula changes if the first payment is to be received immediately. The new formula
would be: PV $=$ Payment per Period $\times(1+(1-(1+i)-(\mathrm{t}-1))) \mathrm{i}$ Using this formula in the question: PV $=$ Payment per Period $\times(1+(1-(1+i)-(t-$ 1)) $) \mathrm{i} P \mathrm{PV}=7,000 \times(1+(1-(1+0.06)-(3-1))) 0$.
$06 \mathrm{PV}=7,000 \times(1+(1-(1.06)-2)) 0.06 \mathrm{PV}=7,000 \times(1+(1-(1.06)-$ 2) $) 0.06 \mathrm{PV}=7,000 \times(1+1$.
833) $\mathrm{PV}=7,000 \times 2.833 \mathrm{PV}=\$ 19,8315 . \quad$ Suppose you are to receive a payment of $\$ 4000$ every year for three years. You are depositing these payments in a bank account that pays 3% interest. Given these three payments and this interest rate, how much will be in your bank account in three years? Answer: Year 1Payment

Received
3\%
Year
Received
Year 2
3\%
Years
Received
Year 3

4, 000Interest Earned at
120Total after 1
4, 120 Year 2Payment
4, 000Total at the start of
8, 120Interest Earned at
243. 6Total after 2
8363. 6 Year 3Payment

4, 000Total at the start of

Years $12,734.512,734.5$ will be the total amount in the bank account after 3 years. References Shauna Carther. (2008) Understanding The Time Value Of Money.

RetrievedNov 1, 2008, from Investopedia Website: http://www. investopedia. com/articles/03/082703. asp? Page= 1

