Normal distribution argumentative

ASSIGN BUSTER

A population of measurements is approximately normally distributed with mean of 25 and a variance of 9 . Find the probability that a measurement selected at random will be between 19 and 31 . Solution: The values 19 and 31 must be transformed into the corresponding z values and then the area between the two z values found. Using the transformation formula from X to $z($ where $\mu=25$ and $? \mathrm{v} 9=3)$, we have $\mathrm{z} 19=(19-25) / 3=-2$ and $\mathrm{z} 31=$ $(31-25) / 3=+2$ From the area between $z= \pm 2$ is $2(0.4772)=0.9554$ Therefore the probability that a measurement selected at random will be between 19 and 31 is about 0.95 .

This area (probability) is shown fir the X values and for the z values. $?=30$. 95 ? = 10.95×1925 31-2 $0+2$ Normal curve showing Standard normal curve showing area between 19 and 31area between -2 and +2 Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100 . Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585. Will he be admitted to this university?

Solution: Let x be the random variable that represents the scores. x is normally distributed with a mean of 500 and a standard deviation of 100 . The total area under the normal curve represents the total number of students who took the test. If we multiply the values of the areas under the curve by 100 , we obtain percentages. For $x=585, z=(585-500) / 100=0$. 85 The proportion P of students who scored below 585 is given by $\mathrm{P}=$ [area to the left of $z=0.85]=0.8023=80.23 \%$ Tom scored better than 80.23% of the students who took the test and he will be admitted to this University.

