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1. Introduction 
Let ( x , u ( x ) ) be a minimal graph in ℝ 2 × ℝ, which means that u ( x ) 

solves the equation 

div ( ∇ u 1 + | ∇ u | 2 ) = 0 . 

The celebrated Bernstein theorem states that the complete minimal graphs 

in ℝ 3 are planes. The works of Fleming [ 9 ], Almgren [ 1 ], and Neto and 

Wang [ 16 ] tell us that the Bernstein theorem is valid for complete minimal 

graphs in ℝ n +1 provided that n ≤ 7. Counterexamples to the theorem for n 

≥ 8 have been found by Bombieri et al.[ 2 ] and, later, by Lawson [ 13 ]. On 

the other hand, do Carmo and Peng [ 6 ] and Fischer-Colbrie and Schoen [ 10

] proved independently that a completely stable minimal surface in ℝ 3 must 

be a plane, a result that generalizes the Bernstein theorem. For the high-

dimensional case, it is an open question whether the completely oriented 

stable minimal hypersurfaces in ℝ n +1 (for 3 ≤ n ≤ 7) are hyperplanes. 

However, it has been proved by do Carmo and Peng [ 6 ] that a complete 

stable minimal hypersurface M in ℝ n +1 is a hyperplane if 

lim R → ∞ ∫ B x 0 ( R ) | h | 2 d v R 2 q + 2 = 0 , q < 2 n , 

where B x 0 ( R ) denotes the geodesic ball of radius R centered at x 0 ∈ M . 

Many interesting generalizations of the do Carmo-Peng theorem have been 

obtained (see, e. g., [ 7 , 15 , 16 , 18 ]). By definition, the hyperbolic space ℍ

n + p is a Riemannian manifold with sectional curvature −1 which is simply 

connected, complete, and ( n + p )-dimensional. In hyperbolic space, some 
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results similar to the do Carmo-Peng theorem have been derived. Xia and 

Wang [ 20 ] studied complete minimal submanifolds in a hyperbolic space 

and obtained the following result. 

T HEOREM 1. 1. [ 20 ] For n ≥ 5, let M be an n - dimensional complete 

immersed minimal submanifold in a hyperbolic space ℍ n + p , and let h be 

the second fundamental form of M . Assume that 

lim R → ∞ sup ∫ B x 0 ( R ) | h | 2 d v R 2 = 0 . ( 1. 1 ) 

If there exists a positive constant C depending only on n and p such that 

∫ M | h | n d v < C , 

then M is totally geodesic . 

Recently, de Oliveira and Xia [ 8 ] improved Theorem 1. 1 as follows. 

T HEOREM 1. 2. [ 8 ] For n ≥ 4, let M be an n - dimensional complete 

immersed minimal submanifold in a hyperbolic space ℍ n + p such that n and 

p satisfy ( n 2 - 6 n + 1 ) + 8 p > 0 . Assume that 

lim R → ∞ sup ∫ B x 0 ( R ) | h | d d v R 2 = 0 , 

where d is a constant with the following properties : 

(1) if p = 1 and n ≥ 4, then 

d ∈ ( n - 1 n , ( n - 2 ) ( n - 1 ) n ) ; 

(2) if p > 1 and n > 5, then 
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d ∈ ( n − 1 ) 2 2 n ( 1 − 1 − 4 ( n − 1 ) 2 ( n − 2 p ) , 1 + 1 − 4 ( n − 1 ) 2 ( n

− 2 p ) ) . 

Then there exists a positive constant C depending only on n , p , and d such 

that M is totally geodesic if 

∫ M | h | n d v < C . 

The unit sphere ???? n + p is a Riemannian manifold with sectional curvature 

1 which is simply connected, complete, and ( n + p )-dimensional. Many 

results are available on the classification of compact minimal submanifolds in

the unit sphere. Simons [ 17 ] calculated the Laplacian of | h | 2 of minimal 

submanifolds in a space form. As a consequence of Simons' formula, if M is a

compact minimal submanifold in ???? n + p and | h | 2 ≤ n p 2 p - 1 , then 

either M is totally geodesic or | h | 2 = n p 2 p - 1 . In the latter case, Chern 

et al.[ 3 ] further proved that M is either a Clifford hypersurface or a 

Veronese surface in ???? 4 . Li and Li [ 14 ] and Chen and Xu [ 4 ] proved 

independently that M is either a totally geodesic submanifold or a Veronese 

surface in ???? 4 if | h | 2 ≤ 2 3 n everywhere on M . This result improves the 

pinching constant in Simons' formula. Deshmukh [ 5 ] studied n -dimensional

compact minimal submanifolds in ???? n + p with scalar curvature S satisfying

the pinching condition S > n ( n − 2) and proved that for p ≤ 2 these 

submanifolds are totally geodesic. 

The above results are rigidity theorems valid in the unit sphere, which 

characterize the behavior of minimal submanifolds. In this paper, we use the 

methods of minimal submanifolds in Euclidean space and hyperbolic space 
https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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to investigate the rigidity of complete minimal submanifolds in spherical 

space. The main theorems are as follows. 

T HEOREM 1. 3. For n ≥ 3, let M be an n - dimensional complete minimal 

submanifold in the unit sphere ???? n + p . We further assume that (1. 1) 

holds. If 

∫ M | h | n d v < C n ( n , p ) 

with C ( n , p ) = ( c ( n ) ) - 1 ( n 2 + 7 ) - 1 2 ( 2 b ( p ) ) - 1 + ( n p b ( p ) ) - 

1 , where c ( n ) = 2 n ( 1 + n ) 1 + 1 n ( n - 1 ) - 1 ω n - 1 n , ω n is the 

volume of the unit ball in ℝ n , b (1) = 1, and b ( p ) = 3 2 if p > 1, then M is 

totally geodesic . 

In [ 20 ], Xia and Wang believed that the condition (1. 1) is not necessary. It 

is therefore interesting to see whether we can remove condition (1. 1) from 

Theorem 1. 3. In this case, we get a positive answer. 

T HEOREM 1. 4. For n ≥ 3, let M be an n - dimensional complete minimal 

submanifold in the unit sphere ???? n + p . If 

∫ M | h | n d v < C ~ n ( n , p ) 

with C ~ ( n , p ) = ( n c ( n ) ) - 1 2 ( n - 1 ) ( n 2 + 7 ) b ( p ) + 4 n ( n 2 + 7 )

p b ( p ) , where c ( n ) = 2 n ( 1 + n ) 1 + 1 n ( n - 1 ) - 1 ω n - 1 n , ω n is the

volume of the unit ball in ℝ n , b (1) = 1, and b ( p ) = 3 2 if p > 1, then M is 

totally geodesic . 
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Remark 1. 5. By using Simons' formula and the technique developed in do 

Carmo and Peng's paper, we obtain Theorem 1. 4. The constant C ~ ( n , p ) 

in Theorem 1. 4 is smaller than C ( n, p ) in Theorem 1. 3. 

We also investigate stable minimal hypersurfaces in the unit sphere and 

obtain a result similar to do Carmo and Peng's theorem. A minimal 

hypersurface M in a Riemannian manifold N is said to be stable if for each f ∈

C 0 ∞ ( M ) , 

∫ M ( | ∇ f | 2 - ( | h | 2 + Ric ¯ ( ν , ν ) ) f 2 ) d v ≥ 0 , ( 1. 2 ) 

where Ric ¯ is the Ricci curvature of N and ν is the unit normal vector of M . 

T HEOREM 1. 6. For n ≥ 2, let M be an n - dimensional complete stable 

minimal hypersurface in the unit sphere ???? n +1 . If 

lim R → ∞ sup ∫ B x 0 ( R ) | h | 2 δ d v R 2 = 0 , 1 - 2 n < δ < 1 + 2 n , ( 1. 3 )

where B x 0 ( R ) denotes the geodesic ball of radius R centered at x 0 ∈ M , 

then M is totally geodesic . 

2. Preliminaries 
Let M be an n -dimensional complete submanifold in the ( n + p )-

dimensional unit sphere ???? n + p . We will use the following convention on 

the range of indices unless specified otherwise: 

1 ≤ A , B , C , … ≤ n + p , 1 ≤ i , j , k , … ≤ n , n + 1 ≤ α , β , γ , … ≤ n + p . 

https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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We choose a local field of orthonormal frame { e 1 , e 2 , …, e n + p } in ???? n

+ p such that, restricted to M , { e 1 , e 2 , …, e n } is tangent to M and { e n 

+1 , …, e n + p } normal to M . Let {ω A } be the field of dual frame and {ω AB

} the connection 1-form of ???? n + p . Restricting these forms to M , we have 

ω i α = ∑ j h i j α ω j , h = ∑ i , j , α h i j α ω i ⊗ ω j ⊗ e α , ξ = 1 n ∑ i , α h i i α

e α , 

where h and ξ are the second fundamental form and the mean curvature 

vector of M , respectively. We define 

H = | ξ | , | h | 2 = ∑ i , j , α ( h i j α ) 2 , | ∇ h | 2 = ∑ i , j , k , α ( h i j k α ) 2 , 

where h i j k α is the component of the covariant derivative of h i j α . When 

M is minimal, we obtain the Simons' formula [ 3 , 17 ] 

1 2 Δ | h | 2 = | ∇ h | 2 + n | h | 2 - ∑ i , j , k , l , α , β h i j α h i j β h k l α h k l 

β - ∑ i , j , α , β ( ∑ k ( h i k α h k j β - h j k α h k i β ) ) 2 . ( 2. 1 ) 

The last terms in (2. 1) can be estimated as [ 14 ] 

- ∑ i , j , k , l , α , β h i j α h i j β h k l α h k l β - ∑ i , j , α , β ( ∑ k ( h i k α h k j 

β - h j k α h k i β ) ) 2 ≥ - b ( p ) | h | 4 , ( 2. 2 ) 

with b (1) = 1 and b ( p ) = 3 2 if p > 1. We need the following estimate: 

L EMMA 2. 1. [ 19 ] Let M be an n - dimensional immersed submanifold with 

parallel mean curvature in the space form M n + p ( k ). Then 

| ∇ h | 2 − | ∇ | h | | 2 ≥ 2 n p | ∇ | h | | 2 . 
https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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We also need the following Hoffman-Spruck Sobolev inequality. 

L EMMA 2. 2. [ 12 ] Let M be an n - dimensional complete submanifold in a 

Hadamard manifold and let ψ ∈ C 0 1 ( M ) . Then 

( ∫ M ψ n n - 1 d v ) n - 1 n ≤ c ( n ) ∫ M ( | ∇ ψ | + n | H | ψ ) d v , 

where c ( n ) = 2 n ( 1 + n ) 1 + 1 n ( n - 1 ) - 1 ω n - 1 n and ω n is the 

volume of the unit ball in ℝ n . 

From Lemma 2. 2, we have the following estimate. 

L EMMA 2. 3. [ 11 ] For n ≥ 3, let M be an n - dimensional complete minimal 

submanifold in ???? n + p and let ψ ∈ C 0 1 ( M ) . Then 

( ∫ M ψ 2 n n - 2 d v ) n - 2 n ≤ 2 ( n 2 + 7 ) c 2 ( n ) ∫ M ( | ∇ ψ | 2 + | ψ | 2 ) d

v . 

3. Proofs of the Main Theorems 
P ROOF OF T HEOREM 1. 3: Noting that 

1 2 Δ | h | 2 = | ∇ | h | | 2 + | h | Δ | h | , 

it follows from (2. 1) and (2. 2) that 

| ∇ | h | | 2 + | h | Δ | h | ≥ | ∇ h | 2 + n | h | 2 − b ( p ) | h | 4 . 

From Lemma 2. 1, we have 

| h | Δ | h | ≥ 2 n p | ∇ | h | | 2 + n | h | 2 − b ( p ) | h | 4 . ( 3. 1 ) 

https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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Given η ∈ C 0 ∞ ( M ) , multiplying (3. 1) by η 2 and integrating over M gives 

∫ M η 2 | h | Δ | h | d v + ∫ M b ( p ) η 2 | h | 4 d v ≥ 2 n p ∫ M | ∇ | h | | 2 η 2 d

v + n ∫ M | h | 2 η 2 d v , ( 3. 2 ) 

which implies 

- ∫ M 2 η | h |  ∇ | h | , ∇ η  d v + ∫ M b ( p ) η 2 | h | 4 d v ≥ ( 1 + 2 n p ) ∫ M 〈 〉

| ∇ | h | | 2 η 2 d v + n ∫ M | h | 2 η 2 d v . ( 3. 3 ) 

Further, applying Hölder's inequality and taking ψ = | h | η in Lemma 2. 3, 

one verifies that 

∫  M η 2 | h | 4 d v ≤ ( ∫  M | h | n d v ) 2 n ( ∫  M ( η | h | ) 2 n n − 2 d v ) n − 

2 n ≤ 2 ( n 2 + 7 ) c 2 ( n ) ( ∫  M | h | n d v ) 2 n ∫  M ( | ∇ ( η | h | ) | 2 + | h | 

2 η 2 ) d v . ( 3. 4 ) 

Setting 

l = 2 b ( p ) ( n 2 + 7 ) c 2 ( n ) ( ∫ M | h | n d v ) 2 n , 

from (3. 3) and (3. 5) we may estimate 

l ∫ M | ∇ η | 2 | h | 2 d v + ( l - 1 ) ∫ M 2 η | h |  ∇ | h | , ∇ η  d v ≥ ( 1 + 2 n p 〈 〉

- l ) ∫ M | ∇ | h | | 2 η 2 d v + ( n - l ) ∫ M | h | 2 η 2 d v . ( 3. 5 ) 

By assumption, 

( ∫ M | h | n d v ) 1 n < c - 1 ( n ) ( n 2 + 7 ) - 1 2 ( 2 b ( p ) ) - 1 + ( n p b 

( p ) ) - 1 , 

https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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and it is easy to see that 

1 + 2 n p - l > 0 . 

Therefore, we can find a θ > 0 such that 

1 + 2 n p - l ≥ θ . 

On the other hand, for any ε > 0 we have 

( l - 1 ) ∫ M 2 η | h |  ∇ | h | , ∇ η  d v ≤ | l - 1 | ε ∫ M η 2 | ∇ | h | | 2 d v + | l - 〈 〉

1 | ε - 1 ∫ M | ∇ η | 2 | h | 2 d v . ( 3. 6 ) 

Thus, when | l - 1 | ε ≤ θ 2 , we obtain 

( l + | l - 1 | ε - 1 ) ∫ M | ∇ η | 2 | h | 2 d v ≥ θ 2 ∫ M | ∇ | h | | 2 η 2 d v + ( n - 

l ) ∫ M | h | 2 η 2 d v . ( 3. 7 ) 

Fix a point x 0 ∈ M and choose η ∈ C 0 ∞ ( M ) as 

η = { 1 on B x 0 ( R ) , 0 on M B x 0 ( 2 R ) , | ∇ η | ≤ 1 R on B x 0 ( 2 R ) B x 0

( R ) , ( 3. 8 ) 

with 0 ≤ η ≤ 1, where B x 0 ( R ) denotes the geodesic ball of radius R 

centered at x 0 ∈ M . Substituting the above η into (3. 7) and letting R → ∞, 

we deduce that 

∫ M | ∇ | h | | 2 d v ≤ 0 , ∫ M | h | 2 d v ≤ 0 . 

Hence | h | 2 = 0, that is, M n is totally geodesic. □ 

Proof of Theorem 1. 4: Direct computation yields 
https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
spheres/
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Δ | h | δ = δ ( δ - 1 ) | h | δ - 2 | ∇ | h | | 2 + δ | h | δ - 1 Δ | h | . ( 3. 9 ) 

Multiplying (3. 9) by | h | δ and using (3. 1), we infer that 

| h | δ Δ | h | δ = δ − 1 δ | ∇ | h | δ | 2 + δ | h | 2 δ − 2 | h | Δ | h | ≥ δ − 1 δ | 

∇ | h | δ | 2 + 2 δ n p | ∇ | h | | 2 | h | 2 δ − 2 + n δ | h | 2 δ − δ b ( p ) | h | 2 δ

+ 2 = ( δ − 1 δ + 2 n p δ ) | ∇ | h | δ | 2 + ( n δ − b ( p ) δ | h | 2 ) | h | 2 δ . 

( 3. 10 ) 

Let η ∈ C 0 ∞ ( M ) . Multiplying (3. 10) by η 2 and integrating over M yields 

∫ M η 2 | h | δ Δ | h | δ d v ≥ ( δ - 1 δ + 2 n p δ ) ∫ M η 2 | ∇ | h | δ | 2 d v + n 

δ ∫ M η 2 | h | 2 δ d v - b ( p ) δ ∫ M η 2 | h | 2 δ + 2 d v . ( 3. 11 ) 

It follows from the divergence theorem and (3. 11) that 

b ( p ) δ ∫ M η 2 | h | 2 δ + 2 d v - ∫ M 2 η | h | δ  ∇ η , ∇ | h | δ  d v ≥ ( 2 + 2 〈 〉

- n p n p δ ) ∫ M η 2 | ∇ | h | δ | 2 d v + n δ ∫ M η 2 | h | 2 δ d v . ( 3. 12 ) 

Applying Hölder's inequality and taking ψ = | h | δ η in Lemma 2. 3, we have 

∫ M η 2 | h | 2 δ + 2 d v ≤ ( ∫ M | h | n d v ) 2 n ( ∫ M ( η | h | δ ) 2 n n − 2 d 

v ) n − 2 n ≤ 2 n 2 c 2 ( n ) ( ∫ M | h | n d v ) 2 n ∫ M ( | ∇ ( η | h | δ ) | 2 + | h |

2 δ η 2 ) d v . ( 3. 13 ) 

Substituting (3. 13) into (3. 12) yields 

δ l ∫ M | h | 2 δ | ∇ η | 2 d v + ( δ l - 1 ) ∫ M 2 η | h | δ  ∇ η , ∇ | h | δ  d v ≥ 〈 〉

( 2 + 2 - n p n p δ - l δ ) ∫ M η 2 | ∇ | h | δ | 2 d v + ( n δ - l δ ) ∫ M η 2 | h | 2 δ

d v , ( 3. 14 ) 
https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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where l = 2 b ( p ) ( n 2 + 7 ) c 2 ( n ) ( ∫ M | h | n ) 2 n . Further, using the 

Cauchy-Schwarz inequality, for each ε > 0 we obtain 

( δ l - 1 ) ∫ M 2 η | h | δ  ∇ η , ∇ | h | δ  d v ≤ | δ l - 1 | ε ∫ M η 2 | ∇ | h | δ | 2 〈 〉

d v + | δ l - 1 | ε - 1 ∫ M | h | 2 δ | ∇ η | 2 d v . ( 3. 15 ) 

Therefore 

( δ l + | δ l - 1 | ε - 1 ) ∫ M | h | 2 δ | ∇ η | 2 d v ≥ ( 2 + 2 - n p n p δ - l δ - | δ l 

- 1 | ε ) ∫ M η 2 | ∇ | h | δ | 2 d v + ( n δ - l δ ) ∫ M η 2 | h | 2 δ d v . ( 3. 16 ) 

By the assumption in the theorem that 

( n c ( n ) ) - 1 2 ( n - 1 ) ( n 2 + 7 ) b ( p ) + 4 n ( n 2 + 7 ) p b ( p ) > ( ∫ M | h

| n d v ) 1 n , 

we have 

2 + 2 - n p n p δ - l δ > 0 . 

Choosing ε sufficiently small, we can get 

2 + 2 - n p n p δ - l δ - | δ l - 1 | ε > 0 . 

Defining the cut-off function as in (3. 8) and taking δ = n 2 in (3. 16), we 

obtain 

( n 2 l + | n 2 l - 1 | ε - 1 ) ∫ M | h | n d v R 2 ≥ ( n 2 l + | n 2 l - 1 | ε - 1 ) ∫ B x

0 ( 2 R ) | h | n d v R 2 ≥ ( 2 + 4 - 2 n p n 2 p - n 2 l - | n 2 l - 1 | ε ) ∫ B x 0 ( R

) | ∇ | h | n 2 | 2 d v + ( 1 2 n 2 - n 2 l ) ∫ B x 0 ( R ) | h | n d v . ( 3. 17 ) 

https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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Since 

( ∫ M | h | n d v ) 1 n < C ~ ( n , p ) , 

upon taking R → ∞ we have 

∫ M | h | n d v R 2 → 0 . 

This and (3. 17) imply ∇| h | = 0 and | h | = 0, that is, M n is totally geodesic. 

□ 

Proof of Theorem 1. 6: Since M is a stable minimal hypersurface in the unit 

sphere ???? n +1 , (1. 2) holds on M . Let η ∈ C 0 ∞ ( M ) . Replacing f by η| h |

δ in (1. 2) and taking Ric ¯ ( ν , ν ) = n give 

∫ M | ∇ ( η | h | δ ) | 2 d v ≥ ∫ M η 2 | h | 2 δ + 2 d v + n ∫ M η 2 | h | 2 δ d v , 

that is, 

∫ M | ∇ η | 2 | h | 2 δ d v + ∫ M η 2 | ∇ | h | δ | 2 d v + 2 ∫ M η | h | δ  ∇ η , ∇ | 〈

h | δ  d v - n ∫ M η 2 | h | 2 δ d v ≥ ∫ M η 2 | h | 2 δ + 2 d v . ( 3. 18 ) 〉

Substituting (3. 18) into (3. 12) and noting that b (1) = 1, we obtain 

δ ∫ M | ∇ η | 2 | h | 2 δ d v + 2 ( δ - 1 ) ∫ M η | h | δ  ∇ η , ∇ | h | δ  d v ≥ ( 2 〈 〉

+ 2 - n n δ - δ ) ∫ M η 2 | ∇ | h | δ | 2 d v + 2 n δ ∫ M η 2 | h | 2 δ d v . ( 3. 19 )

Using 1 - 2 n < δ < 1 + 2 n , we see that 

2 + 2 - n n δ - δ > 0 . 

https://assignbuster.com/rigidity-of-complete-minimal-submanifolds-in-
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Further, for any ε > 0, it follows from the Cauchy-Schwarz inequality that 

ε | δ - 1 | ∫ M η 2 | ∇ | h | δ | 2 d v + ε - 1 | δ - 1 | ∫ M | ∇ η | 2 | h | 2 δ d v ≥ 2 

( δ - 1 ) ∫ M η | h | δ  ∇ η , ∇ | h | δ  d v . ( 3. 20 ) 〈 〉

Combining (3. 20) and (3. 19) gives 

( δ + ε - 1 | δ - 1 | ) ∫ M | ∇ η | 2 | h | 2 δ d v ≥ ( 2 + 2 - n n δ - δ - ε | δ - 1 | ) ∫

M η 2 | ∇ | h | δ | 2 d v + 2 n δ ∫ M η 2 | h | 2 δ d v . ( 3. 21 ) 

Choosing ε sufficiently small, we can obtain 

2 + 2 - n n δ - δ - ε | δ - 1 | > 0 . 

Furthermore, defining the cut-off function as in (3. 8) and using the 

assumption (1. 3) yield ∇| h | = 0 and | h | = 0, that is, M n is totally geodesic.

□ 

4. Conclusion 
In this paper, by using Simons' formula, a Sobolev-type inequality as in Chen 

and Xu [ 4 ], and the technique of do Carmo and Peng, we obtain rigidity 

theorems for minimal submanifolds in ???? n + p . Compared with Theorem 1. 

1, Theorem 1. 4 removes the condition on the growth of the norm of the 

second fundamental form. Moreover, our results require only n ≥ 3, whereas 

Theorems 1. 1 and 1. 2 require n ≥ 5 and n ≥ 4, respectively. Whether the 

pinching constant for the total curvature in Theorem 1. 4 is optimal remains 

an open question and is a topic of future research. 
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