
Single-instruction 
stream multiple-data 
stream architecture

https://assignbuster.com/single-instruction-stream-multiple-data-stream-architecture/
https://assignbuster.com/single-instruction-stream-multiple-data-stream-architecture/
https://assignbuster.com/single-instruction-stream-multiple-data-stream-architecture/
https://assignbuster.com/


Single-instruction stream multiple-data ... – Paper Example Page 2

Introduction to SIMD Architectures 

SIMD (Single-Instruction Stream Multiple-Data Stream) architectures are 

essential in the parallel world of computers. Their ability to manipulate large 

vectors and matrices in minimal time has created a phenomenal demand in 

such areas as weather data and cancer radiation research. The power behind

this type of architecture can be seen when the number of processor 

elements is equivalent to the size of your vector. In this situation, 

componentwise addition and multiplication of vector elements can be done 

simultaneously. Even when the size of the vector is larger than the number 

of processors elements available, the speedup, compared to a sequential 

algorithm, is immense. There are two types of SIMD architectures we will be 

discussing. The first is the True SIMD followed by the Pipelined SIMD. Each 

has its own advantages and disadvantages but their common attribute is 

superior ability to manipulate vectors. 

True SIMD: Distributed Memory 

The True SIMD architecture contains a single contol unit(CU) with multiple 

processor elements(PE) acting as arithmetic units(AU). In this situation, the 

arithmetic units are slaves to the control unit. The AU’s cannot fetch or 

interpret any instructions. They are merely a unit which has capabilities of 

addition, subtraction, multiplication, and division. Each AU has access only to

its own memory. In this sense, if a AU needs the information contained in a 

different AU, it must put in a request to the CU and the CU must manage the 

transferring of information. The advantage of this type of architecture is in 

the ease of adding more memory and AU’s to the computer. The 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 3

disadvantage can be found in the time wasted by the CU managing all 

memory exchanges. 

True SIMD: Shared Memory 

Another True SIMD architecture, is designed with a configurable association 

between the PE’s and the memory modules(M). In this architecture, the local 

memories that were attached to each AU as above are replaced by memory 

modules. These M’s are shared by all the PE’s through an alignment network 

or switching unit. This allows for the individual PE’s to share their memory 

without accessing the control unit. This type of architecture is certainly 

superior to the above, but a disadvantage is inherited in the difficulty of 

adding memory. 

Pipelined SIMD 

Pipelined SIMD architecture is composed of a pipeline of arithmetic units with

shared memory. The pipeline takes different streams of instructions and 

performs all the operations of an arithmetic unit. The pipeline is a first in first

out type of procedure. The size of the pipelines are relative. To take 

advantage of the pipeline, the data to be evaluated must be stored in 

different memory modules so the pipeline can be fed with this information as

fast as possible. The advantages to this architecture can be found in the 

speed and efficiency of data processing assuming the above stipulation is 

met. 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 4

SIMD BASICS 

Early microprocessors didn’t actually have any floating-point capabilities; 

they were strictly integer crunchers.? Floating-point calculations were done 

on separate, dedicated hardware, usually in the form of a math 

coprocessor.? Before long though, transistor sizes shrunk to the point where 

it became feasible to put a floating-point unit directly onto the main CPU die, 

and the modern integer/floating-point microprocessor was born.? Of course, 

the addition of floating-point hardware meant the addition of floating-point 

instructions.? For the x86 world, this meant the introduction of the x87 

floating-point architecture and its (now hopelessly archaic) stack-based 

register model. 

Actually, the addition of SIMD instructions and hardware to a modern, 

superscalar CPU is a bit more drastic than the addition of floating-point 

capability.? A microprocessor is a SISD device (Single Instruction stream, 

Single Data stream), and it has been since its inception. 

As you can see from the above picture, a SIMD machine exploits a property 

of the data stream called data parallelism.? You get data parallelism when 

you have a large mass of data of a uniform type that needs the same 

instruction performed on it.? A classic example of data parallelism is 

inverting an RGB picture to produce its negative.? You have to iterate 

through an array of uniform integer values (pixels), and perform the same 

operation (inversion) on each one — multiple data points, a single 

operation.? Modern, superscalar SISD machines exploit a property of the 

instruction stream called instruction-level parallelism (ILP).? In a nutshell, 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 5

this means that you execute multiple instructions at once on the same data 

stream.? (See my other articles for more detailed discussions of ILP).? So a 

SIMD machine is a different class of machine than a normal microprocessor.?

SIMD is about exploiting parallelism in the data stream, while superscalar 

SISD is about exploiting parallelism in the instruction stream. 

There were some early, ill-fated attempts at making a purely SIMD machine 

(i. e., a SIMD-only machine).? The problem with these attempts is that the 

SIMD model is simply not flexible enough to accoodate general purpose 

code.? The only form in which SIMD is really feasible is as a part of a SISD 

host machine that can execute conditional instructions and other types of 

code that SIMD doesn’t handle well.? This is, in fact, the situation with SIMD 

in today’s market.? Programs are written for a SISD machine, and include in 

their code SIMD instructions. 

SIMD Machines 

The three SIMD machines covered in this paper are the Connection Machine 

by Danny Hillis, the Abacus Project at the MIT AI Lab, and the CAM-8 machine

by Norman Margolus. These three machines give a pretty accurate sampling 

of the type of SIMD machines that were constructed as well as an idea of the 

motivations for creating the machines in the first place. 

The Connection Machine was composed of 65, 536 bit processors. Each die 

consisted of 16 processors with each processor capable of communicating 

with each other via a switch. These 4, 096 dies formed the nodes of a 12th 

dimension hypercube network. 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 6

Thus, a processor was guaranteed to be within 12 hops of any other 

processor in the machine. The hypercube network also facilitated 

communication by providing alternative routes from source processor to 

destination. Each node was given a 12-bit node ID, and different paths 

between two nodes in the network could be traversed based on how the 

node ID was read. The network allowed for both packet and circuit-based 

communication for flexibility. 

The second machine discussed is the Abacus machine created at the MIT AI 

Lab. This machine was constructed primarily for vision processing. The 

machine consisted of 1024 bit processing elements set in a 2D mesh. The 

primary concept of interest from the design was that the processing 

elements were configurable, and used reconfigurable bit parallel “ RBP” 

algorithms instead of traditional bit serial computation. This means that each

PE emulated logic for part of an arithmetic circuit (be it an adder, shifter, 

multiplier, etc) based on a RBP algorithm. The motivation for having these 

configurable processingelements was to save on the silicon area needed to 

implement arithmetic. However, because there was a necessary overhead 

for reconfiguration and the implementation did not easily allow for pipelining 

due to data dependencies, it was not clear that having configurable 

processing elements was a definite win. 

SIMD versus Loop Pipelining 

We can consider two different models for mapping loops onto coarse-grained

reconfigurable architecture – SIMD and loop pipelining. SIMD computation 

model is efficient for computation intensive, data-parallel applications 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 7

requiring less context words to configure reconfigurable processing 

elements. Since data load and computation are temporarily separated in this

model, 

array elements are not efficiently utilized. In the case of loop pipelining, 

different operations in a loop can be executed simultaneously in a pipeline. 

With this flexibility, data load and computation can be simultaneously 

executed and all reconfigurable array elements can be efficiently used. In 

some loops, the performance of pipelining is roughly the same as the 

performance of SIMD. However, if a loop has frequent memory operations, 

the pipelining will render much higher performance. 

Reconfigurable Architecture 

The reconfigurable architecture that we propose consists of an ARM 926EJ-S 

processor, an SDRAM, a DMA controller, and a coarse-grained Reconfigurable

Core Module (RCM) template, which is similar to Morphosys and specified in 

the DSE flow. The communication bus is AMBA AHB , which couples the ARM 

926EJ-S processor and the DMA controller as master devices and the RCM as 

a slave device. The ARM 926EJ-S processor executes control intensive, 

irregular code segments and the RCM executes data-intensive, kernel code 

segments. 

Design Space Exploration 

The design space exploration (DSE) flow of coarse-grained reconfigurable 

architecture. A design starts from profiling and partitioning of target 

application and defining an architecture from the tem plate. Data intensive, 

regular loops are selected from the profiling result and the rest of the 
https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 8

application is modified to take care of synchronization. The selected loops 

are analyzed to determine the RCM structure from the template and the 

configuration words are generated. Design space exploration flow From the 

architecture specification, we can generate a SystemC description for fast 

architecture evaluation . Then the loop pipelining model is applied to the 

SystemC description. Binary configuration data are included in the 

executable code and overall performance of the application is evaluated on 

the transaction level platform. The transaction level modeling enables fast 

design space exploration at early stage . Finally, the architecture is designed

at the RT level from the SystemC model and the performance is evaluated on

the RTL platform. The RTL architecture is verified by FPGA prototyping. 

RCM Template Architecture 

RCM specification starts from the template architecture similar to Morphosys.

Whereas the memory structure (frame buffer and configuration cache) of 

Morphosys support only the SIMD model, we support both SIMD and 

pipelining by modifying the memory structure. 

Types of memory:- 

Frame Buffer 

Frame buffer (FB) of Morphosys does not support concurrency between the 

load of two operands and the store of result in a same column. It is not 

needed in SIMD mapping. However, in the case of loop pipelining, concurrent

load and store operations can happen between mapped loop iterations. So 

we modified the FB and bit-width of data bus is specified in the DSE flow. We 

simply added a bank to each set. Therefore, a bank can be connected to the 
https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 9

write bus while the other two banks are connected to the read buses. Any 

combination of one-to-one mapping between the three banks and the three 

buses is possible. 

Configuration Cache 

Context memory of Morphosys is designed for broadcast configuration. So 

RCs in the same row or column share the same context word for SIMD 

operation. However, in the case of loop pipelining, each RC can be 

configured by different context word. So we modified the context memory 

and designated it as Configuration Cache. Configuration cache is composed 

of 64 Cache Elements(CE) and Cache Control Unit(CCU) for controlling each 

CE. Each CE has enough layers that enable dynamic reconfiguration and the 

number of layers is specified in the DSE flow. CCU supports 4 configuration 

modes(three broadcast modes and one individual mode) for efficient data 

assignment. 

RC Array Execution Control Unit 

If the main processor directly controls the RC array execution through AMBA 

AHB, it will cause high overhead in the main processor. In addition, the 

latency of the control will degrade the performance of the whole system, 

especially when dynamic reconfiguration is used. So we implement a control 

unit to control the execution of the RC array every cycle. The RC Array 

Execution Control Unit (RCECU) receives the encoded data for controlling RC 

execution from the main processor. The encoded data includes execution 

cycles, chip select, read/write mode, and addresses of FB and CCU for 

guaranteeing correct operations of the RC array. 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/



Single-instruction stream multiple-data ... – Paper Example Page 10

RCM Specification 

From profiling result, we find that ME and DCT functions occupymost of the 

execution time – ME takes about 70% and DCT takes about 7. 40%. 

Specifically, Sum of Absolute Differences (SAD) function called by ME takes 

about 47. 7%. Furthermore, the two functions have regular loops that fit well 

with the RC array. We determine the RCM structure by analyzing the DCT 

and ME functions. The structure is similar to Morphosys but the bit-widthof 

the data bus is extended to 16 and some interconnects between RCs are 

added for the DCT function. In the case of Morphosys, horizontal and vertical 

express lanes exist to guarantee connectivity between quadrants but 

express lanes don’t support concurrent data exchange between symmetrical 

RCs in the same row or column. Therefore the interconnects are added for 

removing data arrangement cycles . We do not expect much increase in the 

area with this modification but need quantitative analysis to see the effect. 

https://assignbuster.com/single-instruction-stream-multiple-data-stream-
architecture/


	Single-instruction stream multiple-data stream architecture
	Introduction to SIMD Architectures
	True SIMD: Distributed Memory
	True SIMD: Shared Memory
	Pipelined SIMD
	SIMD BASICS
	SIMD Machines
	SIMD versus Loop Pipelining
	Reconfigurable Architecture
	Design Space Exploration
	RCM Template Architecture
	Types of memory:-
	Frame Buffer
	Configuration Cache
	RC Array Execution Control Unit
	RCM Specification


