How to calculate present values essay sample

ASSIGN BUSTER

Answers to Problem Sets

1. If the discount factor is .507 , then $.507 * 1.126=\$ 1$
2. $125 / 139=.899$
3. $\mathrm{PV}=374 /(1.09) 9=172.20$
4. $\mathrm{PV}=432 / 1.15+137 /(1.152)+797 /(1.153)=376+104+524=\$ 1$, 003
5. $\mathrm{FV}=100 * 1.158=\$ 305.90$
6. NPV $=-1,548+138 / .09=-14.67$ (cost today plus the present value of the perpetuity)
7. $\mathrm{PV}=4 /(.14-.04)=\$ 40$
8. a. $P V=1 / .10=\$ 10$
b. Since the perpetuity will be worth $\$ 10$ in year 7 , and since that is roughly double the present value, the approximate PV equals $\$ 5$.
$P V=(1 / .10) /(1.10) 7=10 / 2=\$ 5$ (approximately)
c. A perpetuity paying $\$ 1$ starting now would be worth $\$ 10$, whereas a perpetuity starting in year 8 would be worth roughly $\$ 5$. The difference between these cash flows is therefore approximately $\$ 5$. $\mathrm{PV}=10-5=\$ 5$ (approximately)
d. $P V=C /(r-g)=10,000 /(.10-.05)=\$ 200,000$.
9. a. $\mathrm{PV}=10,000 /(1.055)=\$ 7,835.26$ (assuming the cost of the car does not appreciate over those five years).
b. You need to set aside $(12,000 \times 6$-year annuity factor $)=12,000 \times 4$. $623=$ \$55, 476.
c. At the end of 6 years you would have $1.086 \times(60,476-55,476)=\$ 7$, 934.
10. We did not cover continuous compounding so you do not need to worry about this question.
11. Same as 10.
