
Making utilities for 
ms-dos essay

https://assignbuster.com/making-utilities-for-ms-dos-essay/
https://assignbuster.com/making-utilities-for-ms-dos-essay/
https://assignbuster.com/


Making utilities for ms-dos essay – Paper Example Page 2

Making Utilities for MS-DOS 

Michael Sokolov 

English 4 

Mr. Siedlecki 

February 1, 1996 

Making Utilities for MS-DOS 

These days, when computers play an important role in virtually all aspects of

our life, the issue of concern to many programmers is Microsoft’s hiding of 

technical documentation. Microsoft is by far the most important system 

software 

developer. There can be no argument about that. Microsoft’s MS-DOS 

operating 

system has become a de facto standard (IBM’s PC-DOS is actually a licensed 

version of MS-DOS). And this should be so, because these systems are very 

well 

written. The people who designed them are perhaps the best software 

engineers in 

the world. 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 3

But making a computer platform that is a de facto standard should imply a 

good 

deal of responsibility before the developers who make applications for that 

platform. In particular, proper documentation is essential for such a platform.

Not providing enough documentation for a system that everyone uses can 

have 

disastrous results. Think of it, an operating system is useless by itself, its 

sole purpose is to provide services to applications. And who would be able to 

develop applications for an operating system if the documentation for that 

system is confidential and available only to the company that developed it? 

Obviously, only the company that has developed that operating system will 

be 

able to develop software for it. And this is a violation of the Antitrust Law. 

And now I start having a suspicion that this is happening with Microsoft’s 

operating systems. It should be no secret to anyone that MS-DOS contains a 

lot 

of undocumented system calls, data structures and other features. 

Numerous books 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 4

have been written on this subject (see bibliography). Many of them are vital 

to 

system programming. There is no way to write a piece of system software, 

such as 

a multitasker, a local area network, or another operating system extension, 

without knowing this undocumented functionality in MS-DOS. And, sure 

enough, 

Microsoft is using this functionality extensively when developing operating 

system extensions. For example, Microsoft Windows, Microsoft Network, and 

Microsoft CD-ROM Extensions (MSCDEX) rely heavily on the undocumented 

internals 

of MS-DOS. 

The reader can ask, “ Why do they leave functionality undocumented?” To 

answer 

that question, we should look at what this “ functionality” actually is. In MS- 

DOS, the undocumented “ functionality” is actually the internal structures 

that 

MS-DOS uses to implement its documented INT 21h API. Any operating 

system must 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 5

have some internal structures in which it keeps information about disk 

drives, 

open files, network connections, alien file systems, running tasks, etc. And 

MS- 

DOS (later I’ll call it simply DOS) has internal structures too. These 

structures form the core of undocumented “ functionality” in MS-DOS. This 

operating system also has some undocumented INT 21h API functions, but 

they 

serve merely to access the internal structures. 

These internal structures are extremely version-dependent. Each new major 

MS-DOS 

version up to 4. 00 introduced a significant change to these structures. 

Applications using them will always be unportable and suffer compatibility 

problems. Every computer science textbook would teach you not to mingle 

with 

operating system internals. That’s exactly why these internal structures are 

undocumented. 

This bring another question, “ Why does Microsoft rely on these structures in 

its 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 6

own applications?” To answer this question, we should take a look at an 

important class of software products called utilities. Utilities are programs 

that don’t serve end users directly, but extend an operating system to help 

applications serve end users. To put it another way, utilities are helper 

programs. Perhaps the best way to learn when you have to mingle with DOS 

internals is to spend some time developing an utility for MS-DOS. A good 

example 

is SteelBox, an utility for on-the-fly data encryption. This development 

project 

have made me think about the use of DOS internals in the first place and it 

has 

inspired me to write this paper. 

Utilities like SteelBox, Stacker, DoubleSpace, new versions of SmartDrive, 

etc. 

need to do the following trick: register with DOS as device drivers, get 

request 

packets from it, handle them in a certain way, and sometimes forward them 

to the 

driver for another DOS logical drive. The first three steps are rather 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 7

straightforward and do not involve any “ illicit” mingling with MS-DOS 

internals. 

The problems begin in the last step. MS-DOS doesn’t provide any 

documented 

“ legal” way to find and to call the driver for a logical drive. However, MS-

DOS 

does have internal structures, called Disk Parameter Blocks (DPBs) which 

contain 

all information about all logical drives, including the pointers to their 

respective drivers. If you think of it, it becomes obvious that MS-DOS must 

have 

some internal structures like DPBs. Otherwise how would it be able to service

the INT 21h API requests? How would it be able to locate the driver for a 

logical drive it needs to access? 

Many people have found out about DPBs in some way (possibly through 

disassembly 

of DOS code). In the online community there is a very popular place for 

information obtained through reverse engineering, called The MS-DOS 

Interrupt 

List, maintained by Ralf Brown. This list is for everyone’s input, and the 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 8

people who reverse engineer Microsoft’s operating systems often send their 

discoveries to Ralf Brown, who includes them into his list. The DPB format 

and 

the INT 21h call used to get pointers to DPBs are also in Interrupt List. As a 

result, many programmers, including me, have used this information in their 

utilities without much thinking. 

However, this is not a good thing to do. DPBs exist since the first release of 

MS-DOS as IBM PC-DOS version 1. 00, but the DPB format has changed three

times 

throughout the history. The first change occured in MS-DOS version 2. 00, 

when 

the hard disk support, the installable device drivers and the UNIX-like nested 

directories were introduced. The second change occured in MS-DOS version 

3. 00, 

when the array of Current Directory Structures (CDSs), a new internal 

structure, 

was introduced to support local area networks and JOIN/SUBST commands. 

The third 

change occured in MS-DOS version 4. 00, when 32-bit sector addressing was 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 9

introduced and an oversight with storing the number of sectors in a File 

Allocation Table (FAT) was fixed. The reader can see that each new major 

MS-DOS 

version up to 4. 00 introduced a change in the DPB format. And this is typical

with all MS-DOS undocumented internal structures. 

Although one can probably ignore DOS versions earlier than 3. 10, he still 

would 

have to deal with two different DPB formats. And prior to DOS version 5. 00, 

where DPBs were finally documented, no one could be sure that a new DOS 

version 

wouldn’t change the DPB format once again. In the first version of SteelBox, 

my 

utility that needs to know about DPBs in order to do its work, I simply 

compared 

the DOS version number obtained via INT 21h/AH= 30h with 4. 00. If the DOS

version 

was earlier than 4. 00, I assumed that it has the same DPB format as IBM PC-

DOS 

versions 3. 10-3. 30. If the DOS version was 4. 00 or later, I assumed that it 

has 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 10

the same DPB format as IBM PC-DOS version 4. xx. However, there are 

problems with 

such assumptions. First, there are some versions of MS-DOS other than IBM 

PC-DOS, 

and some of them have their internal structures different from those of 

standard 

MS-DOS and PC-DOS. For example, European MS-DOS 4. 00 returns the same

version 

number as IBM PC-DOS version 4. 00, but its internal structuresmuch more 

closely 

resemble that of PC-DOS version 3. xx. Second, prior to Microsoft’s 

documenting 

of DPBs in MS-DOS version 5. 00, there was no guarantee that the DPB 

format 

wouldn’t change with a new DOS version. 

When I was developing a new version of SteelBox, I started to think about 

how to 

use DPBs properly and in a version-independent manner. I justified the use of

DOS internals in the first place because I know that a lot of Microsoft’s own 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 11

utilities use them extensively. The examples are MS-DOS external 

commands like 

SHARE, JOIN, and SUBST, Microsoft Network, Microsoft Windows, Microsoft 

CD-ROM 

Extensions (MSCDEX), etc. Before we go any further, it should be noted that 

we 

mustn’t be dumping unfairly on Microsoft. Originally I thought that DOS 

internals are absolutely safe to use and that Microsoft doesn’t document 

them 

intentionally in order to get an unfair advantage over its competitors. My 

reasoning for this was that Microsoft’s own utilities have never stopped 

working 

with a new DOS version. 

To find the magic of “ correct” use of DOS internals, I started disassembling 

Microsoft’s utilities. First I looked at three DOS external commands, SHARE, 

JOIN, and SUBST. All three programs check for exact DOS version number 

match. 

This means that they can work only with one specific version of MS-DOS. This

makes sense, given that these utilities are bundled with MS-DOS and can be 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 12

considered to be parts of MS-DOS. One of the utilities, SHARE, unlike other 

DOS 

external commands, accesses the DOS kernel variables by absolute offsets in

DOSGROUP, the DOS kernel data segment, in addition to getting pointers to 

certain DOS internal structures and accessing their fields. SHARE not only 

checks the MS-DOS version number, but also checks the flag at offset 4 in 

DOSGROUP. In DOS Internals, Geoff Chappell says that this flag indicates the 

format (or style) of DOSGROUP layout (501). If you look at the MS-DOS 

source 

code (I’ll explain how to do it in a few paragraphs), you’ll see that programs 

like SHARE access the kernel variables in the following way: 

The kernel modules defining these variables in DOSGROUP are linked in with 

SHARE’s own modules. Since the assembler always works the same way, the 

DOS 

kernel variables get the same offsets in the SHARE’s copy of DOSGROUP as 

in the 

DOS kernel’s copy. When SHARE needs to access a DOS kernel variable, it 

loads 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 13

the real DOSGROUP segment into a segment register, tells the assembler 

that the 

segment register points to SHARE’s own copy of DOSGROUP, and accesses 

the 

variable through that segment register. Although the segment register points

to 

one copy of DOSGROUP and assembler thinks that it points to another one, 

everything works correctly because they have the same format. The reader 

can 

drawn the following conclusion from this aside: MS-DOS designers have 

made the 

MS-DOS internal structures accessible to other programs only for DOS’own 

use 

(since linking DOS modules in with a program is acceptable only for the parts

of 

MS-DOS itself). 

Having seen that DOS external commands are not a good example for a 

program that 

wants to be compatible with all DOS versions, I turned to Microsoft Network. 

One 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 14

of its utilities, REDIR, is very similar to SHARE in its operation. Like SHARE, 

it accesses the DOS kernel variables by absolute offsets. I thought that 

unlike 

SHARE, REDIR is not tied to a specific DOS version. Unfortunatelly, I wasn’t 

able to disassemble it, because as a high school student, I don’t have a copy 

of 

Microsoft Network. However, Geoff Chappell says that it has separate 

versions 

for different versions of DOS, just like SHARE. Therefore, I turned to another 

utility again. 

My next stop was MSCDEX, the utility for accessing the High Sierra and ISO-

9660 

file systems used by CD-ROMs. Unlike SHARE and REDIR, MSCDEX is not tied 

to one 

specific DOS version. I’m using MSCDEX version 2. 21 with MS-DOS version 

5. 00, 

but the same version of MSCDEX can be used with PC-DOS version 3. 30. 

However, it 

accesses the DOS kernel variables by absolute offsets in DOSGROUP, just 

like 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 15

SHARE and REDIR. Of course, my question was “ How does it do that in a 

version- 

independent manner?” When I disassembled it, I saw that it takes the flag at 

offset 4 in DOSGROUP and uses it to determine the absolute offsets of all the

variables it needs. If this flag equals 0, MSCDEX assumes that all offsets it’s 

interested in are the same as in DOS versions 3. 10-3. 30. If this flag equals 

1, 

MSCDEX assumes that all offsets it’s interested in are the same as in DOS 

versions 4. 00-5. 00. For all other values of this flag MSCDEX refuses to load. 

Sharp-eyed readers might notice that this check already makes MSCDEX 

potentially 

incompatible with future DOS versions. The comments in the source code for

MS- 

DOS version 3. 30 (DOSMULT. INC file) refer to MSCDEX, therefore, it had 

existed 

at the time of MS-DOS version 3. 30. It is very doubtful that anyone, 

including 

the author of MSCDEX, could know what offsets would the kernel variables in

DOS 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 16

version 4. 00 have at that time. If this is true, an MSCDEX version that 

predates 

MS-DOS version 4. 00 won’t run under DOS versions 4. 00 and later. 

MSCDEX uses the flag at offset 4 in DOSGROUP to determine not only the 

absolute 

offsets of the kernel variables, but also the “ style” of all other DOS internals 

that had changed with DOS version 4. 00. My first thought was that I can use

this 

flag in my utilities when I need to cope with different “ styles” of DOS 

internals. However, my next discovery really surprised me and gave me a 

real 

understanding of what I’m doing when I mingle with DOS internals. MSCDEX 

version 

2. 21 refuses to run under DOS versions 6. 00 and later. So much for the idea

that 

“ Microsoft’s own utilities have never stopped working with a new DOS 

version.” 

In fact, Geoff Chappell refers to this in DOS Internals (501). 

The last utility I looked at was Microsoft SmartDrive version 4. 00, which is 

bundled with Microsoft Windows version 3. 10. This utility also uses the DOS 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 17

internal structures, including the version-dependent ones. However, unlike 

MSCDEX, SmartDrive doesn’t have a “ top” DOS version number. It compares

the DOS 

version number with 4. 00 and assumes that DOS similar to versions 3. 10-3. 

30 if 

it’s lower than 4. 00 and to versions 4. 00-5. 00 if it’s 4. 00 or higher. 

SmartDrive assumes that all future DOS versions will be compatible with MS-

DOS 

version 5. 00 at the level of the internal structures. 

The lack of clear pattern in the usage of the undocumented DOS internal 

structures by Microsoft’s own utilities made me think seriously about the 

possibility of safe use of the DOS internals in the first place. Originally I 

thought that Microsoft has some internal confidential document that explains

how 

to use the DOS internals safely, and that anyone having that magic 

document can 

use the undocumented DOS internals as safely as normal documented INT 

21h API. 

However, the evidence I have obtained through reverse engineering of 

Microsoft’s 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 18

utilities puts the existence of that magic document under question. In 

Undocumented DOS Andrew Schulman notes that it is possible that on some 

occasions Microsoft’s programmers have found out about the MS-DOS 

internals not 

from the source code or some other internal confidential documents, but 

from 

general PC folklore, just like third-party software developers. For example, 

the 

MWAVABSI. DLL file from the Microsoft Anti-Virus provides a function called 

AIO_ 

GetListofLists(). This function calls INT 21h/AH= 52h to get the pointer to one

extremely important DOS internal structure. In the MS-DOS source code this 

structure is called SysInitVars. However, in Ralf Brown’s Interrupt List and in 

general PC folklore is called the List of Lists. This is an indication that 

Microsoft’s programmers sometimes act just like third-party software 

developers 

(Schulman et al., Undocumented DOS, 44). 

On several occasions I have made references to the MS-DOS source code. 

However, 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 19

most programmers know that the MS-DOS source code is unavailable to non-

Microsoft employees. Therefore, before we go any further, I need to explain 

how 

could I look at the MS-DOS source code. Microsoft gives it to certain 

companies, 

mostly Original Equipment Manufactures (OEMs). Some people can claim 

that they 

are OEMs and get the Microsoft’s documents available only to OEMs 

(however, this 

costs a lot of money). And then some people who don’t care too much about 

laws 

start distributing the confidential information they have. This is especially 

easy in Russia, where copyright laws are not enforced. So one way or 

another, 

knowledge of some parts of MS-DOS source code spreads among the people.

The MS- 

DOS OEM Adaptation Kit (OAK) contains commented source code for some 

MS-DOS 

modules and include files and . OBJ files made from some other modules. 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 20

Let’s summarize what we’ve seen so far. MS-DOS, like any other operating 

system, 

has internal structures. Every computer science textbook would teach you 

not to 

rely on an operating system’s internals. In MS-DOS, the internal structures 

are 

undocumented. Microsoft’s own utilities do rely on them. By reverse 

engineering 

these utilities, looking at the MS-DOS source code, and thinking the problem 

through one can come to the conclusion that there is absolutely no safe way 

of 

using the MS-DOS internal structures. The only proper way of using them is 

not 

using them at all. 

Not later than I have come to this conclusion, my SteelBox development 

project 

returned me back to the reality. No matter how bad it is to use of the MS-

DOS 

internals, utility developers like me have to do it because they have no other

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 21

choice. Now I’m almost sure that this is precisely why Microsoft uses the MS-

DOS 

internals itself. Before we go any further, I need to clarify one important 

detail. 

Once a programmer asked Microsoft to document the INT 2Fh/AH= 11h 

interface, 

generally known as the network redirector interface. Microsoft responded: 

The INT 2fh interface to the network is an undocumented interface. Only INT 

2fh, 

function 1100h (get installed state) of the network services is documented. 

Some third parties have reverse engineered and documented the interface 

(i. e., 

“ Undocumented DOS” by Shulman sic, Addison-Wesley), but Microsoft 

provides 

absolutely no support for programming on that API, and we do not guarantee

that 

the API will exist in future versions of MS-DOS. 

This sounds like Microsoft saying, “ Here’s where you get the info, but you 

better not use it.” (Schulman et al., Undocumented DOS, 495). Some people 

might 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 22

think that Microsoft has internal confidential documents describing the MS-

DOS 

internals much better than Andrew Schulman’s Undocumented DOS, but 

there are 

indications that the MS-DOS source code is the only “ document” Microsoft 

has 

(I’ll address this issue in a few paragraphs). Perhaps the Microsoft’s 

programmers themselves use the same documentation as third parties. 

So far we have seen that MS-DOS is not a perfect operating system, and it 

gives 

utility developers no other choice but to use its undocumented version-

dependent 

internals. The reader might ask, “ what can we do about it?” First of all, some

of the former undocumented DOS functionality was documented in DOS 

version 5. 00. 

The reason for that probably was that some INT 21h functions that were 

used by 

DOS external commands like PRINT don’t actually deal with any DOS 

internals at 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 23

all, and Microsoft had simply underestimated the usefulness of these 

functions 

originally. Microsoft has even documented the DPBs. However, Microsoft’s 

documentation says that the DPBs are available only in DOS versions 5. 00 

and 

later, but the reader should remember that the DPB format has changed 

several 

times throughout the history. So in this case Microsoft even restricted 

themselves in the ability of making changes in MS-DOS by documenting the 

DPBs. 

However, there are still a lot of undocumented internals in MS-DOS. It should

be 

noted that documenting them is out of question. This would make it 

impossible to 

make significant changes in MS-DOS, thereby stalling its enhancement. In 

Undocumented DOS Andrew Schulman suggests that Microsoft could make 

an add-in to 

MS-DOS that would provide “ clean” documented services that would 

eliminate the 

need for the use of DOS internals. Once Microsoft actually did this, when it 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 24

introduced the IFSFUNC utility in MS-DOS version 4. 00. This utility converted

the “ dirty” and extremely version-dependent redirector interface into a 

device- 

driver-like interface. However, this utility was removed from MS-DOS 

versions 

5. 00 and later (I’ll explain why in a few paragraphs). 

Fortunately, the ill-fated IFSFUNC utility was not the only effort to enhance 

MS-DOS. In Microsoft Windows versions 3. 00 through 3. 11, there is a 

component 

called Win386. It has got its name from Windows/386, its ancestor. In early 

beta 

releases of Microsoft’s Chicago operating system this component was called 

DOS386. When Chicago was renamed into Windows 95, this component was 

given 

uninteresting name VMM32. Finally, the beta release of Microsoft C/C++ 

Compiler 

version 7. 00 included this component from Microsoft Windows under the 

name 

MSDPMI. I think that the best name for this component is DOS386, so I’ll call 

it 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 25

this way. 

Probably the reader would ask, “ What this component is?” DOS386 is a 

multitasking protected-mode operating system. A close inspection of 

DOS386 

reveals that it has almost nothing to do with Windows, and has a lot to do 

with 

DOS (that’s why I prefer the name DOS386 over Win386). Two of DOS386’s 

subcomponents, DOSMGR and IFSMGR, are perhaps the heaviest users of 

DOS 

internals. These modules know a lot about the internals of MS-DOS, and they

provide their own interfaces which in fact can help an utility avoid using DOS

internals. For example, let’s return to our SteelBox utility. 

This utility needs to access a file from inside an INT 21h call. Most DOS 

programmers know that DOS INT 21h API is non-reentrant. It means that no 

INT 21h 

calls can be made while an INT 21h call is already being serviced. Therefore, 

an 

utility like SteelBox would have to play tricks with DOS internals with all the 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 26

consequences. On the other hand, DOS386’s IFSMGR subcomponent 

provides an 

interface that replaces INT 21h. Unfortunately, IFSMGR is documented only in

the 

Windows 95 Device Development Kit (DDK), and I don’t have a copy of it yet.

However, it is quite possible that the IFSMGR’s interface is reentrant. If it is, 

all problems with SteelBox would be immediately solved, and it won’t contain

a 

single undocumented DOS call. Keep in mind, however, that DOS386 is 

relatively 

new, and perhaps its current version doesn’t provide all the desired 

functionality. But certainly DOS386 is definitely a good foundation for a new 

operating system. 

Although I definitely don’t want to overblame Microsoft, I have to say some 

unpleasant truth about this company. In their run for profit, people at 

Microsoft violates some principles of free enterprize. In other words, they try 

to make a monopoly. One of the unfair things Microsoft does is called 

discriminatory documentation. Although the source code for MS-DOS, 

Microsoft 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 27

Network, and other Microsoft products is supposedly unavailable to anyone, 

Microsoft has made the source code of some utilities available to selected 

vendors (Schulman et al., Undocumented DOS, 495). 

Another example is the deliberate incompatibility of some Microsoft products

with Digital Research’s DR-DOS. Some programs, including Microsoft 

Windows 

version 3. 10 beta and Microsoft C Compiler version 6. 00, contain special 

code 

with sole purpose of making them incompatible with DR-DOS and other DOS 

workalikes. Although I’m definitely not a supporter of DOS workalikes, I think 

that Microsoft should use fair methods of competition. 

Finally, there is a big problem with Microsoft’s packaging of MS-DOS and 

DOS386. 

The most important problem with DOS386 is that it’s currently available to 

users 

only as Win386 in Microsoft Windows. Furthermore, the usual Windows 

technical 

documentation (except the DDK) doesn’t even mention the existence of 

Win386, 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 28

because it’s actually not a part of Windows. As a result, an amasing number 

of 

programmers don’t even know about DOS386 (or Win386), and many of 

those how do 

greatly underestimate its tremendous importance. 

Now Windows 95 comes into play. In this package, MS-DOS, DOS386, and 

Windows are 

thrown into one melting-pot. First of all, the integration of MS-DOS and 

DOS386 

is a very good step. Given the volatility of DOS internals, the DOSMGR 

subcomponent of DOS386 (which, remember, is perhaps the heaviest user of

DOS 

internals) cetainly should be tied to one specific DOS version. However, the 

tie 

between DOS/DOS386 and Windows is largely artificial. Try a simple 

experiment. 

Rename KRNL386. EXE file in your WINDOWSSYSTEM directory into 

something else, 

and put something else (COMMAND. COM fits nicely) into that directory 

under the 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 29

name KRNL386. EXE. And then try to run Windows. But instead of running 

Windows, 

this would load and activate Win386 without loading Windows. And there is 

no 

magic in this simple experiment. KRNL386. EXE is the first module of 

Windows, and 

Win386 runs it when it completes its initialization. By putting something else 

in place of KRNL386. EXE, one can break the artificial tie between Windows 

and 

DOS386. 

At some point of time Microsoft probably throught of making a version of 

DOS386 

which would not be tied to Windows. There was an utility called MSDPMI in 

the 

beta release of Microsoft C/C++ Compiler version 7. 00, which was that very 

DOS386 without Windows. But now Microsoft is abandoning MS-DOS and 

everything 

else that is not Windows. Microsoft tries to persuade users that Windows 95 

doesn’t contain a DOS component, but this is not true. It is simply tied into 

Windows. 

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 30

Now let’s summarize the above. Microsoft is ignoring the minority users who 

don’t like Windows and who want to use MS-DOS and DOS386 without 

Windows, 

because Microsoft cares only about its profit. One person cannot stop them 

doing 

that. Therefore, we, the programmers, should unite. If I call Microsoft alone, 

no one would listen to me. But if thousands of us do it together, we might 

achieve something. If you have any questions or suggestions about creating 

an 

association of programmers against Microsoft, please send E-mail to Michael 

Sokolov at emailprotected 

Bibliography 

Brown, Ralf. The MS-DOS Interupt List. Not published on paper, available 

online 

for free. 

Chappell, Geoff. DOS Internals. New York: Addison-Wesley Publishing 

Company, 

1994. 

Microsoft Corporation. Microsoft Windows Device Development Kit. Computer

https://assignbuster.com/making-utilities-for-ms-dos-essay/



Making utilities for ms-dos essay – Paper Example Page 31

software. Redmond: Microsoft, 1990. 

Pietrek, Matt. Windows Internals: The Implementation of the Windows 

Operating 

Environment. New York: Addison-Wesley Publishing Company, 1993. 

Schulman, Andrew. , Ralf Brown, David Maxey, Raymond J. Michels, Jim Kyle. 

Undocumented DOS: A Programmer’s Guide to Reserved MS-DOS Functions 

and Data 

Structures. New York: Addison-Wesley Publishing Company, 1994. 

Schulman, Andrew. , David Maxey, Matt Pietrek. Undocumented Windows: A 

Programmer’s Guide to Reserved Microsoft Windows API Functions. New 

York: 

Addison-Wesley Publishing Company, 1992. 

https://assignbuster.com/making-utilities-for-ms-dos-essay/


	Making utilities for ms-dos essay

