- Published: December 12, 2021
- Updated: July 7, 2022
- University / College: King's College London
- Language: English
- Downloads: 37
Most conservation research and its applications tend to happen most frequently at reasonably fine spatial and temporal scales—for example, mesocosm experiments, single-species population viability analyses, recovery plans, patch-level restoration approaches, site-specific biodiversity surveys, et cetera . Yet, at the other end of the scale spectrum, there have been many overviews of biodiversity loss and degradation, accompanied by the development of multinational policy recommendations to encourage more sustainable decision making at lower levels of sovereign governance (e. g., national, subnational).
Yet truly global research in conservation science is fact comparatively rare, as poignantly demonstrated by the debates surrounding the evidence for and measurement of planetary tipping points ( Barnosky et al., 2012 ; Brook et al., 2013 ; Lenton, 2013 ). Apart from the planetary scale of human-driven disruption to Earth’s climate system ( Lenton, 2011 ), both scientific evidence and policy levers tend to be applied most often at finer, more tractable research and administrative scales. But as the massive ecological footprint of humanity has grown exponentially over the last century ( footprintnetwork. org ), robust, truly global-scale evidence of our damage to the biosphere is now starting to emerge ( Díaz et al., 2019 ). Consequently, our responses to these planet-wide phenomena must also become more global in scope.
Conservation scientists are adept at chronicling patterns and trends—from the thousands of vertebrate surveys indicating an average reduction of 68% in the numbers of individuals in populations since the 1970s ( WWF, 2020 ), to global estimates of modern extinction rates ( Ceballos and Ehrlich, 2002 ; Pimm et al., 2014 ; Ceballos et al., 2015 , 2017 ), future models of co-extinction cascades ( Strona and Bradshaw, 2018 ), the negative consequences of invasive species across the planet ( Simberloff et al., 2013 ; Diagne et al., 2020 ), discussions surrounding the evidence for the collapse of insect populations ( Goulson, 2019 ; Komonen et al., 2019 ; Sánchez-Bayo and Wyckhuys, 2019 ; Cardoso et al., 2020 ; Crossley et al., 2020 ), the threats to soil biodiversity ( Orgiazzi et al., 2016 ), and the ubiquity of plastic pollution ( Beaumont et al., 2019 ) and other toxic substances ( Cribb, 2014 ), to name only some of the major themes in global conservation.
But we are generally less successful in translating this evidence into meaningful policy and actions ( Gibbons et al., 2008 ; Shanley and López, 2009 ; Rose et al., 2018 ). Nonetheless, many forward-thinking entities have emerged in recent decades attempting to stem the tide of destruction. The efficacy of some of these mechanisms is arguable, but the establishment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES. net) in 2013 heralded a new era in the required international coordination and response to the crisis ( Díaz et al., 2019 ). While analogous agreements and directives in the past have largely failed to avert the biodiversity crisis ( Adenle, 2012 ; Convention on Biological Diversity, 2020 ), IPBES has built on the successes of the Intergovernmental Panel on Climate Change (IPCC. ch), and can hopefully avoid many of the latter organization’s as well as its predecessors’ failures to coordinate a sufficient response among a majority of nations.
The complex, intertwined, and multi-scale mechanisms driving biodiversity loss ( Game et al., 2014 ) and the erosion of ecosystem services this entails require equally complex solutions backed by sophisticated approaches to provide the necessary evidence for meaningful interventions. The Global Biodiversity Threats section in Frontiers in Conservation Science is specifically dedicated to publishing this type of far-reaching research. In addition to articles finessing the global evidence for the erosion and loss of biodiversity, we are actively seeking and commissioning articles that address the wicked problems ( Game et al., 2014 ) of interacting drivers and solutions at broad scales. Such complicated topics will of course include the ongoing challenges of measuring and predicting the effects of and mitigating solutions for climate change ( Bellard et al., 2012 ), but will also invariably involve research on the necessary transformation of the energy sector ( Brook and Bradshaw, 2015 ; Gasparatos et al., 2017 ; Moreira, 2019 ; Rehbein et al., 2020 ), tackling both the legal and illegal global trade in wildlife ( Harfoot et al., 2018 ;‘ t Sas-Rolfes et al., 2019 ), development of approaches that promote more sustainable agriculture ( Foley et al., 2011 ; Dudley and Alexander, 2017 ; Green et al., 2019 ), aquaculture and fisheries ( Blanchard et al., 2017 ), curtailing human population growth and consumption ( Bradshaw and Brook, 2014 ; Crist et al., 2017 ), addressing the environmental effects of increasing human migration and trade ( McNeely, 2003 ; Lenzen et al., 2012 ; Trouwborst et al., 2016 ), reducing the footprint of urbanization, investigating the nexus between environmental degradation and disease risk ( Wall et al., 2015 ; Gibb et al., 2020 ; Nature Ecology Evolution, 2020 ; Rohr et al., 2020 ), and the biodiversity implications of technological advance in other realms of human endeavor ( Sutherland et al., 2017 ).
In short, we will be emphasizing research on the “ big” topics in the conservation “ sciences” (i. e., including the social sciences), and placing as much (if not more) weight on the solutions as on the empirical evidence for change. While acknowledging my own partiality for mathematical modeling, I foresee that much of this research will probably depend to some extent on elements of complex-systems models to be able to tackle the ominous Scylla that life on Earth now faces. We encourage out-of-the-box thinking and atypical datasets, multidisciplinary approaches, simulation studies, science-policy interface perspectives, and a range of other innovative methodologies and analytical advances. Quite frankly, our discipline has never been as challenged as it is today by the complexity of these wicked problems, and so our research and the policy improvements they occasion have never been more important. The gauntlet has been thrown.
Author Contributions
The manuscript was authored solely by CJAB.
Conflict of Interest
The author declares that the research was done in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
Adenle, A. A. (2012). Failure to achieve 2010 biodiversity’s target in developing countries: how can conservation help? Biodivers. Conserv. 21, 2435–2442. doi: 10. 1007/s10531-012-0325-z
CrossRef Full Text | Google Scholar
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., et al. (2012). Approaching a state shift in Earth’s biosphere. Nature 486, 52–58. doi: 10. 1038/nature11018
CrossRef Full Text | Google Scholar
Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., et al. (2019). Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195. doi: 10. 1016/j. marpolbul. 2019. 03. 022
PubMed Abstract | CrossRef Full Text | Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377. doi: 10. 1111/j. 1461-0248. 2011. 01736. x
PubMed Abstract | CrossRef Full Text | Google Scholar
Blanchard, J. L., Watson, R. A., Fulton, E. A., Cottrell, R. S., Nash, K. L., Bryndum-Buchholz, A., et al. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249. doi: 10. 1038/s41559-017-0258-8
PubMed Abstract | CrossRef Full Text | Google Scholar
Bradshaw, C. J. A., and Brook, B. W. (2014). Human population reduction is not a quick fix for environmental problems. Proc. Natl. Acad. Sci. U. S. A. 111, 16610–16615. doi: 10. 1073/pnas. 1410465111
PubMed Abstract | CrossRef Full Text | Google Scholar
Brook, B. W., and Bradshaw, C. J. A. (2015). Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 29, 702–712. doi: 10. 1111/cobi. 12433
PubMed Abstract | CrossRef Full Text | Google Scholar
Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W., and Blomqvist, L. (2013). Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401. doi: 10. 1016/j. tree. 2013. 01. 016
PubMed Abstract | CrossRef Full Text | Google Scholar
Cardoso, P., Barton, P. S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., et al. (2020). Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. doi: 10. 1016/j. biocon. 2020. 108426
CrossRef Full Text | Google Scholar
Ceballos, G., and Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science 296, 904–907. doi: 10. 1126/science. 1069349
PubMed Abstract | CrossRef Full Text | Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., and Palmer, T. M. (2015). Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1: e1400253. doi: 10. 1126/sciadv. 1400253
PubMed Abstract | CrossRef Full Text | Google Scholar
Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U. S. A. 114, E6089–E6096. doi: 10. 1073/pnas. 1704949114
PubMed Abstract | CrossRef Full Text | Google Scholar
Convention on Biological Diversity (2020). Global Biodiversity Outlook . Montréal, Canada.
Cribb, J. (2014). Poisoned Planet. Crows Nest, NSW: Allen and Unwin.
Crist, E., Mora, C., and Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science 356: 260. doi: 10. 1126/science. aal2011
PubMed Abstract | CrossRef Full Text | Google Scholar
Crossley, M. S., Meier, A. R., Baldwin, E. M., Berry, L. L., Crenshaw, L. C., Hartman, G. L., et al. (2020). No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat. Ecol. Evol 4, 1368–1376. doi: 10. 1038/s41559-020-1269-4
PubMed Abstract | CrossRef Full Text | Google Scholar
Diagne, C., Leroy, B., Gozlan, R. E., Vaissière, A.-C., Assailly, C., Nuninger, L., et al. (2020). InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Dat. 7: 277. doi: 10. 1038/s41597-020-00586-z
PubMed Abstract | CrossRef Full Text | Google Scholar
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., et al. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366: eaax3100. doi: 10. 1126/science. aax3100
PubMed Abstract | CrossRef Full Text | Google Scholar
Dudley, N., and Alexander, S. (2017). Agriculture and biodiversity: a review. Biodiversity 18, 45–49. doi: 10. 1080/14888386. 2017. 1351892
CrossRef Full Text | Google Scholar
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature 478, 337–342. doi: 10. 1038/nature10452
PubMed Abstract | CrossRef Full Text | Google Scholar
Game, E. T., Meijaard, E., Sheil, D., and McDonald-Madden, E. (2014). Conservation in a wicked complex world; challenges and solutions. Conserv. Lett. 7, 271–277. doi: 10. 1111/conl. 12050
CrossRef Full Text | Google Scholar
Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A., and Olang, T. A. (2017). Renewable energy and biodiversity: implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184. doi: 10. 1016/j. rser. 2016. 08. 030
CrossRef Full Text | Google Scholar
Gibb, R., Redding, D. W., Chin, K. Q., Donnelly, C. A., Blackburn, T. M., Newbold, T., et al. (2020). Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402. doi: 10. 1038/s41586-020-2562-8
PubMed Abstract | CrossRef Full Text | Google Scholar
Gibbons, P., Zammit, C., Youngentob, K., Possingham, H. P., Lindenmayer, D. B., Bekessy, S., et al. (2008). Some practical suggestions for improving engagement between researchers and policy-makers in natural resource management. Ecol. Manage. Restor. 9, 182–186. doi: 10. 1111/j. 1442-8903. 2008. 00416. x
CrossRef Full Text | Google Scholar
Goulson, D. (2019). The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. doi: 10. 1016/j. cub. 2019. 06. 069
PubMed Abstract | CrossRef Full Text | Google Scholar
Green, J. M. H., Croft, S. A., Durán, A. P., Balmford, A. P., Burgess, N. D., Fick, S., et al. (2019). Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl. Acad. Sci. U. S. A. 116: 23202. doi: 10. 1073/pnas. 1905618116
PubMed Abstract | CrossRef Full Text | Google Scholar
Harfoot, M., Glaser, S. A. M., Tittensor, D. P., Britten, G. L., McLardy, C., Malsch, K., et al. (2018). Unveiling the patterns and trends in 40 years of global trade in CITES-listed wildlife. Biol. Conserv. 223, 47–57. doi: 10. 1016/j. biocon. 2018. 04. 017
CrossRef Full Text | Google Scholar
Komonen, A., Halme, P., and Kotiaho, J. S. (2019). Alarmist by bad design: strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethink. Ecol. 4, 17–19. doi: 10. 3897/rethinkingecology. 4. 34440
CrossRef Full Text | Google Scholar
Lenton, T. M. (2011). Early warning of climate tipping points. Nat. Clim. Change 1, 201–209. doi: 10. 1038/nclimate1143
PubMed Abstract | CrossRef Full Text | Google Scholar
Lenton, T. M. (2013). Environmental tipping points. Annu. Rev. Environ. Resour. 38, 1–29. doi: 10. 1146/annurev-environ-102511-084654
CrossRef Full Text | Google Scholar
Lenzen, M., Moran, D., Kanemoto, K., Foran, B., Lobefaro, L., and Geschke, A. (2012). International trade drives biodiversity threats in developing nations. Nature 486, 109–112. doi: 10. 1038/nature11145
PubMed Abstract | CrossRef Full Text | Google Scholar
McNeely, J. A. (2003). Biodiversity, war, and tropical forests. J. Sustain. For. 16, 1–20. doi: 10. 1300/J091v16n03_01
CrossRef Full Text | Google Scholar
Moreira, F. (2019). Love me, love me not: perceptions on the links between the energy sector and biodiversity conservation. Energy Res. Soc. Sci. 51, 134–137. doi: 10. 1016/j. erss. 2019. 01. 002
CrossRef Full Text | Google Scholar
Nature Ecology and Evolution (2020). Three-pronged pandemic prevention. Nat. Ecol. Evol. 4, 1149–1149. doi: 10. 1038/s41559-020-01304-z
CrossRef Full Text | Google Scholar
Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J.-L., et al. (2016). Global Soil Biodiversity Atlas . Luxembourg: European Commission.
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344: 1246752. doi: 10. 1126/science. 1246752
PubMed Abstract | CrossRef Full Text | Google Scholar
Rehbein, J. A., Watson, J. E. M., Lane, J. L., Sonter, L. J., Venter, O., Atkinson, S. C., et al. (2020). Renewable energy development threatens many globally important biodiversity areas. Glob. Chang. Biol. 26, 3040–3051. doi: 10. 1111/gcb. 15067
CrossRef Full Text | Google Scholar
Rohr, J. R., Civitello, D. J., Halliday, F. W., Hudson, P. J., Lafferty, K. D., Wood, C. L., et al. (2020). Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33. doi: 10. 1038/s41559-019-1060-6
PubMed Abstract | CrossRef Full Text | Google Scholar
Rose, D. C., Sutherland, W. J., Amano, T., González-Varo, J. P., Robertson, R. J., Simmons, B. I., et al. (2018). The major barriers to evidence-informed conservation policy and possible solutions. Conserv. Lett. 11: e12564. doi: 10. 1111/conl. 12564
PubMed Abstract | CrossRef Full Text | Google Scholar
Sánchez-Bayo, F., and Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. doi: 10. 1016/j. biocon. 2019. 01. 020
CrossRef Full Text | Google Scholar
Shanley, P., and López, C. (2009). Out of the loop: why research rarely reaches policy makers and the public and what can be done. Biotropica 41, 535–544. doi: 10. 1111/j. 1744-7429. 2009. 00561. x
CrossRef Full Text | Google Scholar
Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., et al. (2013). Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66. doi: 10. 1016/j. tree. 2012. 07. 013
PubMed Abstract | CrossRef Full Text | Google Scholar
Strona, G., and Bradshaw, C. J. A. (2018). Co-extinctions annihilate planetary life during extreme environmental change. Sci. Rep. 8: 16724. doi: 10. 1038/s41598-018-35068-1
PubMed Abstract | CrossRef Full Text | Google Scholar
Sutherland, W. J., Barnard, P., Broad, S., Clout, M., Connor, B., Côté, I. M., et al. (2017). A 2017 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 32, 31–40. doi: 10. 1016/j. tree. 2016. 11. 005
PubMed Abstract | CrossRef Full Text | Google Scholar
‘ t Sas-Rolfes, M., Challender, D. W. S., Hinsley, A., Veríssimo, D., and Milner-Gulland, E. J. (2019). Illegal wildlife trade: scale, processes, and governance. Annu. Rev. Environ. Resour. 44, 201–228. doi: 10. 1146/annurev-environ-101718-033253
CrossRef Full Text | Google Scholar
Trouwborst, A., Fleurke, F., and Dubrulle, J. (2016). Border fences and their impacts on large carnivores, large herbivores and biodiversity: an international wildlife law perspective. Rev. Eur. Comp. Int. Environ. Law 25, 291–306. doi: 10. 1111/reel. 12169
CrossRef Full Text | Google Scholar
Wall, D. H., Nielsen, U. N., and Six, J. (2015). Soil biodiversity and human health. Nature 528, 69–76. doi: 10. 1038/nature15744
PubMed Abstract | CrossRef Full Text | Google Scholar