1,287
24
Essay, 10 pages (2500 words)

Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease

Editorial on the Research Topic

Endoplasmic reticulum (ER) and mitochondria are distributed in close communication via a dynamic ER-calcium (Ca 2+) mitochondria interconnection and regulate a plethora of vital cellular functions, including Ca 2+ homeostasis, mitochondrial transport and dynamics, bioenergetics, ER stress, apoptotic signaling, and inflammation ( Erpapazoglou et al., 2017 ). Alteration in the ER-mitochondria communication adversely affects overall physiology of the cell ( Gómez-Suaga et al., 2018 ). ER-mitochondria communication is also involved in lipid transport, suggesting that lipidomic approach may be useful to study the potential mechanisms leading to impaired neuropeptidergic signaling ( Valadas et al., 2018 ). Mitochondria-associated membranes (MAMs) are defined as specialized subdomains connecting ER and mitochondria in order to regulate physiological functions, maintain Ca 2+ signaling and other vital cellular processes ( Rodríguez-Arribas et al., 2017 ). Neurons are highly dependent on MAMs to exchange metabolites and signaling molecules between ER and mitochondria, suggesting that altered function of MAMs due to toxin insults such as rotenone and manganese could play a crucial role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD) ( Krols et al., 2016 ;;;). Modifications in the communication between ER and mitochondria cause a reduction in mitochondrial Ca 2+ homeostasis in several animal models of neurodegeneration, such as PD, an age-dependent neurodegenerative disorder characterized by the progressive loss of dopamine (DA)-producing neurons in the substantia nigra ( Paillusson et al., 2016 ; Lee et al., 2018 ). Several cellular mechanisms have been identified to be involved in the DAergic neuronal death, including mitochondrial dysfunction, impaired bioenergetics, oxidative stress, autophagy and impaired intracellular Ca 2+ homeostasis in patient-derived cell models of PD (;). However, mechanisms underlying how organelle crosstalk (especially between mitochondria and ER) could affect the progression of pathogenesis in PD still remain unknown. ER stress activates unfolded protein response through the upregulation of the ER chaperone GRP78 and caspases as well as evokes Ca 2+ flux that induces mitochondrial dysfunction and associated loss of DA neurons ( Arduíno et al., 2009 ;). Interestingly, increased ROS production through PERK/eIF2α/ATF4/CHOP pathway of UPR and concomitant alteration of the mitochondrial network morphology have been reported in PARK20 fibroblasts (). Emerging evidence supporting significance of altered ER–mitochondria communication suggests that damaged ER–mitochondria signaling could be a potential therapeutic strategy to treat neurodegenerative diseases.

The present Research Topic is an effort to showcase the significance of MAM in PD pathogenesis. Here, we discuss the recent findings in PD research with main focus on molecular and cellular mechanisms involving mitochondria and ER. Pathophysiological significance of ER-mitochondria interaction has been demonstrated in the case of PD-related genes, such as α-synuclein (α-syn) ( Guardia-Laguarta et al., 2014 ), DJ-1 ( Ottolini et al., 2013 ), PINK1 ( Celardo et al., 2016 ; Gelmetti et al., 2017 ), and Parkin ( Van Laar et al., 2015 ; Celardo et al., 2016 ; Gautier et al., 2016 ; Gelmetti et al., 2017 ; Zheng et al., 2017 ). Several clinical cases with diagnosed PD show a well-defined Lewy body pathology ( Cookson et al., 2008 ), which are composed of α-syn. Protein aggregation and imbalanced cellular proteostasis are key factors leading to accumulation of misfolded α-syn (). Within neurons, α-syn is diversely localized to cytosolic and membrane compartments including synaptic vesicles, mitochondria and the ER ( Guardia-Laguarta et al., 2015 ;). Membrane localization of α-syn is well-targeted to lipid rafts (detergent-resistant membranes) that are enriched in cholesterol and acidic phospholipids ( Fortin et al., 2004 ). Interestingly, a subpopulation of α-syn is shown to be enriched in MAM fraction in immortalized cell lines and in the mouse and human brain ( Poston et al., 2013 ; Guardia-Laguarta et al., 2014 ; Paillusson et al., 2016 ). Certainly, identification of the A53T mutation in the gene encoding for α-syn ( SNCA ) provides us better understanding of both the genetics and the neuropathology of PD ( Polymeropoulos et al., 1997 ). It has been demonstrated that A53T mutant showed a decreased association with MAM and an elevated mitochondrial fragmentation, as compared to wild-type α-syn ( Guardia-Laguarta et al., 2014 ). Moreover, overexpression of either wild-type or mutant α-syn decreases ER–mitochondria contacts ( Paillusson et al., 2016 ). Thus, substantial accumulation of α-syn aggregates could be linked to the loss of function of this protein at the MAMs. Interestingly, subcellular localization of α-syn to MAM could be related to both normal and pathological states ( Guardia-Laguarta et al., 2014 , 2015 ). A recent study demonstrated that α-syn binds to VAPB (an ER-mitochondria tethering protein) to disrupt Ca 2+ homeostasis and mitochondrial ATP production ( Paillusson et al., 2016 ).

PINK1/Parkin-mediated mitophagy could be an underlying mechanism of nigral DA neuron death in PD ( Thomas et al., 2011 ; Kane et al., 2014 ; Barodia et al., 2017 ). ER-mitochondria contact sites were shown to constitute the initiation sites for this process ( Yang and Yang, 2013 ). During mitophagy, PINK1 and BECN1 re-localize at MAM, which induces ER-mitochondria tethering and autophagosome formation ( Gelmetti et al., 2017 ). Parkin expression was significantly increased in the MAM fraction of neurons following glutamate excitotoxicity ( Van Laar et al., 2015 ), which also ubiquitylated several proteins of the ER-mitochondria interface including Mfn2, VDACs and Miro ( Sarraf et al., 2013 ; Pickrell and Youle, 2015 ). Parkin may regulate ER-mitochondria communication via Mfn2 ( Basso et al., 2018 ). Mitochondrial and ER stress results in an upregulation of Parkin levels via ATF4 ( Bouman et al., 2011 ). ER-mitochondria communication was reported to be increased in fibroblasts from patients with PARK2 or PARK6 mutations compared to control group ( Celardo et al., 2016 ; Gautier et al., 2016 ). This alteration was associated with higher mitochondrial Ca 2+ absorption, upon IP 3 R stimulation. Similar structural changes were observed in MEFs from PARK2 knock-out mice ( Gautier et al., 2016 ). Parkin has recently been reported to co-regulate ER-mitochondria communication together with the transcription factor peroxisome proliferator activated receptor g coactivator 1a (PGC-1α), a key modulator of mitochondrial biogenesis ( Zheng et al., 2017 ). ER–mitochondria associations have also been linked to the formation of the inflammasome. Cellular stress in neurodegenerative diseases are detected by the innate immune system through pattern recognition receptors ( Paillusson et al., 2016 ). Reactive oxygen species (ROS) from mitochondria are one signal for activation of the NLRP3 inflammasome ( Abais et al., 2015 ). Elevated ROS generation led to NLRP relocation to MAM, which may provide a mechanism whereby NLRP senses damage mitochondria to activate the inflammasome ( Zhou et al., 2011 ). Due to the importance of MAMs in understanding the fundamental mechanisms of PD pathogenesis and their potential use as a therapeutic approach, further research is needed to investigate on the communications between the ER and mitochondria.

Author Contributions

SB collected the relevant references and wrote the manuscript. VT, KP, SK, and VM edited the manuscript and provided thorough reviews on the manuscript.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank you the authors who have contributed to this Research Topic and the dedicated reviewers who helped us reach the highest quality standards. We gratefully acknowledge the valuable input of the Frontiers editorial team members for their support in editing and publishing the scientific content.

References

Abais, J. M., Xia, M., Zhang, Y., Boini, K. M., and Li, P. L. (2015). Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 22, 1111–1129. doi: 10. 1089/ars. 2014. 5994

|

Arduíno, D. M., Esteves, A. R., Cardoso, S. M., and Oliveira, C. R. (2009). Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson’s disease. Neurochem. Int. 55, 341–348. doi: 10. 1016/j. neuint. 2009. 04. 004

||

Barodia, S. K., Creed, R. B., and Goldberg, M. S. (2017). Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull. 133, 51–59. doi: 10. 1016/j. brainresbull. 2016. 12. 004

||

Basso, V., Marchesan, E., Peggion, C., Chakraborty, J., von Stockum, S., Giacomello, M., et al. (2018). Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res. 138, 43–56. doi: 10. 1016/j. phrs. 2018. 09. 006

||

Bouman, L., Schlierf, A., Lutz, A. K., Shan, J., Deinlein, A., Kast, J., et al. (2011). Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769–782. doi: 10. 1038/cdd. 2010. 142

||

Celardo, I., Costa, A. C., Lehmann, S., Jones, C., Wood, N., Mencacci, N. E., et al. (2016). Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson’s disease. Cell Death Dis. 7: e2271. doi: 10. 1038/cddis. 2016. 173

||

Cookson, M. R., Hardy, J., and Lewis, P. A. (2008). Genetic neuropathology of Parkinson’s disease. Int. J. Clin. Exp. Pathol. 1, 217–231.

|

Erpapazoglou, Z., Mouton-Liger, F., and Corti, O. (2017). From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration. Neurochem. Int. 109, 171–183. doi: 10. 1016/j. neuint. 2017. 03. 021

||

Fortin, D. L., Troyer, M. D., Nakamura, K., Kubo, S., Anthony, M. D., and Edwards, R. H. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. J. Neurosci. 24, 6715–6723. doi: 10. 1523/JNEUROSCI. 1594-04. 2004

||

Gautier, C. A., Erpapazoglou, Z., Mouton-Liger, F., Muriel, M. P., Cormier, F., Bigou, S., et al. (2016). The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum. Mol. Genet. 25, 2972–2984. doi: 10. 1093/hmg/ddw148

||

Gelmetti, V., De Rosa, P., Torosantucci, L., Marini, E. S., Romagnoli, A., Di Rienzo, M., et al. (2017). PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13, 654–669. doi: 10. 1080/15548627. 2016. 1277309

||

Gómez-Suaga, P., Bravo-San Pedro, J. M., González-Polo, R. A., Fuentes, J. M., and Niso-Santano, M. (2018). ER-mitochondria signaling in Parkinson’s disease. Cell Death Dis. 9: 337. doi: 10. 1038/s41419-017-0079-3

||

Guardia-Laguarta, C., Area-Gomez, E., Rüb, C., Liu, Y., Magran, é, J., Becker, D., et al. (2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259. doi: 10. 1523/JNEUROSCI. 2507-13. 2014

||

Guardia-Laguarta, C., Area-Gomez, E., Schon, E. A., and Przedborski, S. (2015). Novel subcellular localization for alpha-synuclein: possible functional consequences. Front. Neuroanat. 9: 17. doi: 10. 3389/fnana. 2015. 00017

||

Kane, L. A., Lazarou, M., Fogel, A. I., Li, Y., Yamano, K., Sarraf, S. A., et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153. doi: 10. 1083/jcb. 201402104

||

Krols, M., van Isterdael, G., Asselbergh, B., Kremer, A., Lippens, S., Timmerman, V., et al. (2016). Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 131, 505–523. doi: 10. 1007/s00401-015-1528-7

||

Lee, K. S., Huh, S., Lee, S., Wu, Z., Kim, A. K., Kang, H. Y., Lu, B., et al. (2018). Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. U. S. A. 115, E8844–E8853. doi: 10. 1073/pnas. 1721136115

||

Ottolini, D., Cal, ì, T., Negro, A., and Brini, M. (2013). The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum. Mol. Genet. 22, 2152–2168. doi: 10. 1093/hmg/ddt068

||

Paillusson, S., Stoica, R., Gomez-Suaga, P., Lau, D. H. W., Mueller, S., Miller, T., et al. (2016). There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39, 146–157. doi: 10. 1016/j. tins. 2016. 01. 008

||

Pickrell, A. M., and Youle, R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273. doi: 10. 1016/j. neuron. 2014. 12. 007

||

Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047. doi: 10. 1126/science. 276. 5321. 2045

||

Poston, C. N., Krishnan, S. C., and Bazemore-Walker, C. R. (2013). In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics 79, 219–230. doi: 10. 1016/j. jprot. 2012. 12. 018

||

Rodríguez-Arribas, M., Yakhine-Diop, S. M. S., Pedro, J. M. B., Gómez-Suaga, P., Gómez-Sánchez, R., Martínez-Chacón, G., et al. (2017). Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson’s Disease. Mol. Neurobiol. 54, 6287–6303. doi: 10. 1007/s12035-016-0140-8

||

Sarraf, S. A., Raman, M., Guarani-Pereira, V., Sowa, M. E., Huttlin, E. L., Gygi, S. P., et al. (2013). Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376. doi: 10. 1038/nature12043

||

Thomas, K. J., McCoy, M. K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., et al. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 20, 40–50. doi: 10. 1093/hmg/ddq430

||

Valadas, J. S., Esposito, G., Vandekerkhove, D., Miskiewicz, K., Deaulmerie, L., Raitano, S., et al. (2018). ER lipid defects in neuropeptidergic neurons impair sleep patterns in Parkinson’s disease. Neuron 98, 1155–1169 e1156. doi: 10. 1016/j. neuron. 2018. 05. 022

||

Van Laar, V. S., Roy, N., Liu, A., Rajprohat, S., Arnold, B., Dukes, A. A., et al. (2015). Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. 74, 180–193. doi: 10. 1016/j. nbd. 2014. 11. 015

||

Yang, J. Y., and Yang, W. Y. (2013). Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat. Commun. 4: 2428. doi: 10. 1038/ncomms3428

||

Zheng, L., Bernard-Marissal, N., Moullan, N., D’Amico, D., Auwerx, J., Moore, D. J., et al. (2017). Parkin functionally interacts with PGC-1alpha to preserve mitochondria and protect dopaminergic neurons. Hum. Mol. Genet. 26, 582–598. doi: 10. 1093/hmg/ddw418

||

Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225. doi: 10. 1038/nature09663

||

Thank's for Your Vote!
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 1
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 2
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 3
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 4
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 5
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 6
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 7
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 8
Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Page 9

This work, titled "Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) 'Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease'. 16 January.

Reference

AssignBuster. (2022, January 16). Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease. Retrieved from https://assignbuster.com/editorial-mitochondria-and-endoplasmic-reticulum-dysfunction-in-parkinsons-disease/

References

AssignBuster. 2022. "Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease." January 16, 2022. https://assignbuster.com/editorial-mitochondria-and-endoplasmic-reticulum-dysfunction-in-parkinsons-disease/.

1. AssignBuster. "Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease." January 16, 2022. https://assignbuster.com/editorial-mitochondria-and-endoplasmic-reticulum-dysfunction-in-parkinsons-disease/.


Bibliography


AssignBuster. "Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease." January 16, 2022. https://assignbuster.com/editorial-mitochondria-and-endoplasmic-reticulum-dysfunction-in-parkinsons-disease/.

Work Cited

"Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease." AssignBuster, 16 Jan. 2022, assignbuster.com/editorial-mitochondria-and-endoplasmic-reticulum-dysfunction-in-parkinsons-disease/.

Get in Touch

Please, let us know if you have any ideas on improving Editorial: mitochondria and endoplasmic reticulum dysfunction in parkinson’s disease, or our service. We will be happy to hear what you think: [email protected]